国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (6): 756-762.doi: 10.7518/gjkq.2024076
Yuheng Feng(),Fei Liu,Yanyan Zhang,Jiefei Shen(
)
摘要:
口颌面疼痛的病理机制复杂,临床上目前仍缺乏持久有效的治疗手段,给患者生活带来沉重负担。近年来,研究表明外周和中枢神经系统中的泛连接蛋白(PANX)在调控口颌面部疼痛的发生和发展中发挥着重要作用。本文重点阐述PANX的结构和功能,以及其在疼痛中的作用和机制,包括口颌面部的神经病理性疼痛、炎性疼痛和其他疼痛。通过深入了解PANX在口颌面部疼痛中的作用和功能,以期为口颌面部疼痛的诊断与治疗提供理论基础和治疗策略。
中图分类号:
1 | Jin MY, Everett ES, Abd-Elsayed A. Microbiological and physiological effects of pain[J]. Curr Pain Headache Rep, 2023, 27(6): 165-173. |
2 | Galkov MD, Surin AM, Lisina OY, et al. Neurodegeneration and neuroinflammation: the role of pannexin 1[J]. Neurochem J, 2023, 17(4): 727-739. |
3 | 曹烨, 雷杰, 刘木清, 等. 口颌面疼痛国际分类与诊断标准(第一版)(一)[J]. 中国口腔医学继续教育杂志, 2022, 25(3): 136-143. |
Cao Y, Lei J, Liu MQ, et al. International classification of orofacial pain (1st edition)( Ⅰ)[J]. Chin J Stomatol Contin Educ, 2022, 25(3): 136-143. | |
4 | Vier C, Almeida MB, Neves ML, et al. The effectiveness of dry needling for patients with orofacial pain associated with temporomandibular dysfunction: a systematic review and meta-analysis[J]. Braz J Phys Ther, 2019, 23(1): 3-11. |
5 | Prasad SR, Kumar NR, Shruthi HR, et al. Temporomandibular pain[J]. J Oral Maxillofac Pathol, 2016, 20(2): 272-275. |
6 | Latorre G, González-García N, García-Ull J, et al. Diagnosis and treatment of trigeminal neuralgia: consensus statement from the Spanish Society of Neurology’s Headache Study Group[J]. Neurologia (Engl Ed), 2023: S2173-5808(23)00027-5. |
7 | Šklebar D, Vučemilo L, Šklebar T. Glossopharyngeal nerve as a source of orofacial pain-diagnostic and therapeutic challenges[J]. Acta Clin Croat, 2022, 61(): 90-95. |
8 | Koval M, Schug WJ, Isakson BE. Pharmacology of pannexin channels[J]. Curr Opin Pharmacol, 2023, 69: 102359. |
9 | Romero-Reyes M, Arman S, Teruel A, et al. Pharmacological management of orofacial pain[J]. Drugs, 2023, 83(14): 1269-1292. |
10 | Esseltine JL, Laird DW. Next-generation connexin and pannexin cell biology[J]. Trends Cell Biol, 2016, 26(12): 944-955. |
11 | Hussain N, Apotikar A, Pidathala S, et al. Cryo-EM structures of pannexin 1 and 3 reveal differences among pannexin isoforms[J]. Nat Commun, 2024, 15(1): 2942. |
12 | O’Donnell BL, Penuela S. Skin in the game: pannexin channels in healthy and cancerous skin[J]. Biochem J, 2023, 480(23): 1929-1949. |
13 | Van Campenhout R, Caufriez A, Tabernilla A, et al. Pannexin1 channels in the liver: an open enemy[J]. Front Cell Dev Biol, 2023, 11: 1220405. |
14 | Boassa D, Nguyen P, Hu J, et al. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane[J]. Front Cell Neurosci, 2015, 8: 468. |
15 | Song F, Sun H, Huang L, et al. The role of Panne-xin3-modified human dental pulp-derived mesenchymal stromal cells in repairing rat cranial critical-sized bone defects[J]. Cell Physiol Biochem, 2017, 44(6): 2174-2188. |
16 | Leroy K, Vilas-Boas V, Gijbels E, et al. Expression of connexins and pannexins in diseased human liver[J]. EXCLI J, 2022, 21: 1111-1129. |
17 | Fu D, Song F, Sun H, et al. Expression of Pannexin 3 in human odontoblast-like cells and its hemichannel function in mediating ATP release[J]. Arch Oral Biol, 2015, 60(10): 1510-1516. |
18 | Caskenette D, Penuela S, Lee V, et al. Global deletion of Panx3 produces multiple phenotypic effects in mouse humeri and femora[J]. J Anat, 2016, 228(5): 746-756. |
19 | Huang H, Shakkottai VG. Targeting ion channels and purkinje neuron intrinsic membrane excitability as a therapeutic strategy for cerebellar ataxia[J]. Life (Basel), 2023, 13(6): 1350. |
20 | Harding EK, Zamponi GW. Central and peripheral contributions of T-type calcium channels in pain[J]. Mol Brain, 2022, 15(1): 39. |
21 | Alberti P, Semperboni S, Cavaletti G, et al. Neurons: the interplay between cytoskeleton, ion channels/transporters and mitochondria[J]. Cells, 2022, 11(16): 2499. |
22 | Paciello F, Pisani A, Rolesi R, et al. Oxidative stress and inflammation cause auditory system damage via glial cell activation and dysregulated expression of gap junction proteins in an experimental model of styrene-induced oto/neurotoxicity[J]. J Neuroinflammation, 2024, 21(1): 4. |
23 | Seo JH, Dalal MS, Contreras JE. Pannexin-1 channels as mediators of neuroinflammation[J]. Int J Mol Sci, 2021, 22(10): 5189. |
24 | Grimmer B, Krauszman A, Hu X, et al. Pannexin 1: a novel regulator of acute hypoxic pulmonary vasoconstriction[J]. Cardiovasc Res, 2022, 118(11): 2535-2547. |
25 | Wang N, De Bock M, Decrock E, et al. Paracrine signaling through plasma membrane hemichannels[J]. Biochim Biophys Acta, 2013, 1828(1): 35-50. |
26 | Giaume C, Leybaert L, Naus CC, et al. Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles[J]. Front Pharmacol, 2013, 4: 88. |
27 | D’hondt C, Ponsaerts R, De Smedt H, et al. Panne-xins, distant relatives of the connexin family with specific cellular functions[J]. Bioessays, 2009, 31(9): 953-974. |
28 | Yang K, Xiao Z, He X, et al. Mechanisms of Pannexin 1 (PANX1) channel mechanosensitivity and its pathological roles[J]. Int J Mol Sci, 2022, 23(3): 1523. |
29 | Vogt A, Hormuzdi SG, Monyer H. Pannexin1 and Pannexin2 expression in the developing and mature rat brain[J]. Brain Res Mol Brain Res, 2005, 141(1): 113-120. |
30 | Ray A, Zoidl G, Wahle P, et al. Pannexin expression in the cerebellum[J]. Cerebellum, 2006, 5(3): 189-192. |
31 | Jeon YH, Youn DH. Spinal gap junction channels in neuropathic pain[J]. Korean J Pain, 2015, 28(4): 231-235. |
32 | Scholz J, Finnerup NB, Attal N, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain[J]. Pain, 2019, 160(1): 53-59. |
33 | Wang M, Pan W, Xu Y, et al. Microglia-mediated neuroinflammation: a potential target for the treatment of cardiovascular diseases[J]. J Inflamm Res, 2022, 15: 3083-3094. |
34 | Horton SM, Luna Lopez C, Blevins E, et al. Panne-xin 1 modulates axonal growth in mouse peripheral nerves[J]. Front Cell Neurosci, 2017, 11: 365. |
35 | Bravo D, Ibarra P, Retamal J, et al. Pannexin 1: a novel participant in neuropathic pain signaling in the rat spinal cord[J]. Pain, 2014, 155(10): 2108-2015. |
36 | Bravo D, Zepeda-Morales K, Maturana CJ, et al. NMDA and P2X7 receptors require Pannexin 1 activation to initiate and maintain nociceptive signaling in the spinal cord of neuropathic rats[J]. Int J Mol Sci, 2022, 23(12): 6705. |
37 | Weaver JL, Arandjelovic S, Brown G, et al. Hematopoietic pannexin 1 function is critical for neuropa-thic pain[J]. Sci Rep, 2017, 7: 42550. |
38 | Crespo Yanguas S, Willebrords J, Johnstone SR, et al. Pannexin1 as mediator of inflammation and cell death[J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864(1): 51-61. |
39 | Winzer R, Nguyen DH, Schoppmeier F, et al. Purinergic enzymes on extracellular vesicles: immune modulation on the go[J]. Front Immunol, 2024, 15: 1362996. |
40 | Fang M, Lai R. The price of P2X7R freedom is neuroinflammation[J]. Immunity, 2024, 57(3): 401-403. |
41 | Xiao F, Waldrop SL, Bronk SF, et al. Lipoapoptosis induced by saturated free fatty acids stimulates mo-nocyte migration: a novel role for Pannexin1 in liver cells[J]. Purinergic Signal, 2015, 11(3): 347-359. |
42 | Dong S, Zhang K, Shi Y. Carbenoxolone has the potential to ameliorate acute incision pain in rats[J]. Mol Med Rep, 2021, 24(1): 520. |
43 | Mousseau M, Burma NE, Lee KY, et al. Microglial pannexin-1 channel activation is a spinal determinant of joint pain[J]. Sci Adv, 2018, 4(8): eaas9846. |
44 | Pinheiro AR, Paramos-de-Carvalho D, Certal M, et al. Bradykinin-induced Ca2+ signaling in human subcutaneous fibroblasts involves ATP release via hemichannels leading to P2Y12 receptors activation[J]. Cell Commun Signal, 2013, 11: 70. |
45 | Inoue H, Kuroda H, Ofusa W, et al. Functional coupling between the P2X7 receptor and Pannexin-1 channel in rat trigeminal ganglion neurons[J]. Int J Mol Sci, 2021, 22(11): 5978. |
46 | Kurisu R, Saigusa T, Aono Y, et al. Pannexin 1 role in the trigeminal ganglion in infraorbital nerve injury-induced mechanical allodynia[J]. Oral Dis, 2023, 29(4): 1770-1781. |
47 | Ohyama S, Ouchi T, Kimura M, et al. Piezo1-pannexin-1-P2X3 axis in odontoblasts and neurons mediates sensory transduction in dentinal sensitivity[J]. Front Physiol, 2022, 13: 891759. |
48 | Shibukawa Y, Sato M, Kimura M, et al. Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction[J]. Pflugers Arch, 2015, 467(4): 843-863. |
49 | Koyama R, Iwata K, Hayashi Y, et al. Pannexin 1-mediated ATP signaling in the trigeminal spinal subnucleus caudalis is involved in tongue cancer pain[J]. Int J Mol Sci, 2021, 22(21): 11404. |
50 | Silverman W, Locovei S, Dahl G. Probenecid, a gout remedy, inhibits pannexin 1 channels[J]. Am J Physiol Cell Physiol, 2008, 295(3): C761-C767. |
51 | Wang Q, Li HY, Ling ZM, et al. Inhibition of Schwann cell pannexin 1 attenuates neuropathic pain through the suppression of inflammatory responses[J]. J Neuroinflammation, 2022, 19(1): 244. |
52 | Poon IK, Chiu YH, Armstrong AJ, et al. Unexpected link between an antibiotic, pannexin channels and apoptosis[J]. Nature, 2014, 507(7492): 329-334. |
53 | Rusiecka OM, Tournier M, Molica F, et al. Panne-xin1 channels-a potential therapeutic target in inflammation[J]. Front Cell Dev Biol, 2022, 10: 1020826. |
54 | Dehghani A, Schenke M, van Heiningen SH, et al. Optogenetic cortical spreading depolarization indu-ces headache-related behaviour and neuroinflammatory responses some prolonged in familial hemiplegic migraine type 1 mice[J]. J Headache Pain, 2023, 24(1): 96. |
55 | Martins AC, Paoliello MMB, Docea AO, et al. Review of the mechanism underlying mefloquine-induced neurotoxicity[J]. Crit Rev Toxicol, 2021, 51(3): 209-216. |
56 | Zhang L, Xie Q, Hong H, et al. Increased serum pannexin-1 concentrations reflect illness severity and predict a poor prognosis after acute supratento-rial intracerebral hemorrhage: a prospective longitudinal cohort study[J]. Clin Chim Acta, 2023, 540: 117218. |
57 | Ni BK, Cai JY, Lin Q, et al. Evaluation of serum pannexin-1 as a prognostic biomarker for traumatic brain injury[J]. Clin Chim Acta, 2019, 488: 159-164. |
58 | Dahl GP, Conner GE, Qiu F, et al. High affinity complexes of pannexin channels and L-type calcium channel splice-variants in human lung: possible role in clevidipine-induced dyspnea relief in acute heart failure[J]. EbioMedicine, 2016, 10: 291-297. |
59 | Li S, Zang Z, He J, et al. Expression of pannexin 1 and 2 in cortical lesions from intractable epilepsy patients with focal cortical dysplasia[J]. Oncotarget, 2017, 8(4): 6883-6895. |
60 | Dossi E, Blauwblomme T, Moulard J, et al. Panne-xin-1 channels contribute to seizure generation in human epileptic brain tissue and in a mouse model of epilepsy[J]. Sci Transl Med, 2018, 10(443): eaar3796. |
61 | Cepeda C, Chang JW, Owens GC, et al. In Rasmussen encephalitis, hemichannels associated with microglial activation are linked to cortical pyramidal neuron coupling: a possible mechanism for cellular hyperexcitability[J]. CNS Neurosci Ther, 2015, 21(2): 152-163. |
[1] | 钱颖,龚佳幸,俞梦飞,刘宇,魏栋,朱子羽,陆科杰,王慧明. 从分子生物学角度对成釉细胞瘤诊断及治疗的考量[J]. 国际口腔医学杂志, 2021, 48(5): 570-578. |
[2] | 何优雅,季彤. SMOi>基因突变在成釉细胞瘤中的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 63-67. |
[3] | 岳史婧,卿艺凡,林洁,韩波. 脾酪氨酸激酶及其相关信号通路对头颈部肿瘤发生与发展的影响及作用机制[J]. 国际口腔医学杂志, 2019, 46(4): 442-449. |
[4] | 王小萌,王晓,史册,孙宏晨,黄洋. 骨形态发生蛋白信号通路及其交叉对话对下颌骨发育的影响[J]. 国际口腔医学杂志, 2019, 46(3): 258-262. |
[5] | 张歆缘,王斌,于晖,朱丽文,向琳. Hippo信号通路在骨代谢中的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 263-269. |
[6] | 杨亚,陈鹏,戴红卫,张林. 大鼠正畸牙移动过程中转化生长因子-β/Smad信号通路相关蛋白质在Malassez上皮剩余细胞的表达变化[J]. 国际口腔医学杂志, 2019, 46(3): 270-276. |
[7] | 方川,李雅冬. 微小RNA在口腔鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 646-651. |
[8] | 许彩薇,薛毅,吴仲寅. 骨硬化蛋白与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 703-709. |
[9] | 杨鑫, 李思洁, 赵玮. Wnt信号通路在调控牙髓干细胞多向分化及炎症损伤修复中的作用[J]. 国际口腔医学杂志, 2018, 45(3): 286-290. |
[10] | 薛令法, 张岱尊, 肖文林, 于保军. 机械牵张力促进小鼠骨髓间充质干细胞的成骨向分化[J]. 国际口腔医学杂志, 2017, 44(6): 679-685. |
[11] | 王琪, 陈希彦, 文勇. Hippo/YAP信号通路与细胞增殖相关信号通路交叉作用的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 614-618. |
[12] | 张建康, 卫俊俊, 唐曌隆, 余云波, 敬伟. Wnt和Notch通路在老龄个体骨髓间充质干细胞成骨中的调控[J]. 国际口腔医学杂志, 2017, 44(4): 459-465. |
[13] | 郝旭蕾 梁新华. HIPPO通路在口腔系统发育和疾病中的研究进展[J]. 国际口腔医学杂志, 2016, 43(1): 52-. |
[14] | 詹雪灵 高杰 吴补领. Toll样受体2和4信号通路在炎症治疗中的作用和意义[J]. 国际口腔医学杂志, 2014, 41(3): 304-308. |
[15] | 蔡生青 王 石冰. WNT信号通路及其与唇腭裂发生[J]. 国际口腔医学杂志, 2013, 40(6): 786-789. |
|