Inter J Stomatol ›› 2016, Vol. 43 ›› Issue (3): 348-351.doi: 10.7518/gjkq.2016.03.021

Previous Articles     Next Articles

The groE operon of Streptococcus mutans with its expression and regulation

Wang Yizhou, Zhang Yaqi, Niu Xuewei, Zhang Zhimin   

  1. Dept. of Conservative Dentistry and Endodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China) This study was supported by the National Natural Science Foundation of China(81170945).
  • Received:2015-06-27 Revised:2015-12-09 Online:2016-05-01 Published:2016-05-01

Abstract: Streptococcus mutans(S.mutans), as one of the primary cariogenic bacteria, can respond to several environmental stresses. This ability mainly depends on the translation and expression of variety of heat shock protein genes. groE operon, one of the best-studied heat shock genes, affects the metabolism of cells by translating the heat shock proteins, groES-groEL, which can mediate the folding, assembly, transport, and degradation of new or misfolding proteins. The groE operon locates in 1 834 692-1 832 649 sites, including a σA promoter, inverted repeat sequence(CIRCE), groES, groEL and a terminator. It is highly conserved, and can be induced to express by stress environment including heat, acid, ethanol and hydrogen peroxide. Both HrcA-CIRCE system and CtsR play a negative regulation role, without a clear mechanism. Studies, about the structure and regulation mechanism of S.mutans groE operon in a molecular level, help to further clarify the physiological process of cells, and lay the foundation for understanding the molecular mechanism of cells under stress and pathological conditions.

Key words: Streptococcus mutans, groE operon, heat shock protein gene, regulation, Streptococcus mutans, groE operon, heat shock protein gene, regulation

CLC Number: 

  • Q 786

TrendMD: 
[1] Smith EG, Spatafora GA. Gene regulation in S.mutans: complex control in a complex environment[J]. J Dent Res, 2012, 91(2):133-141.
[2] Lemos JA, Abranches J, Burne RA. Responses of cariogenic streptococci to environmental stresses[J]. Curr Issues Mol Biol, 2005, 7(1):95-107.
[3] Kim JN, Ahn SJ, Seaton K, et al. Transcriptional organization and physiological contributions of the relQ operon of Streptococcus mutans[J]. J Bacteriol, 2012, 194(8):1968-1978.
[4] Matsumi Y, Fujita K, Takashima Y, et al. Contribution of glucan-binding protein A to firm and stable biofilm formation by Streptococcus mutans[J]. Mol Oral Microbiol, 2015, 30(3):217-226.
[5] Li Y, Zheng Z, Ramsey A. et al. Analysis of peptides and proteins in their binding to GroEL[J]. J Pept Sci, 2010, 16(12):693-700.
[6] Kim SN, Bae YG, Rhee DK. Dual regulation of dnaK and groE operons by HrcA and Ca++ in Streptococcus pneumoniae[J]. Arch Pharm Res, 2008, 31(4):462-467.
[7] Lemos JA, Chen YY, Burne RA. Genetic and physiologic analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance in Streptococcus mutans[J]. J Bacteriol, 2001, 183(20):6074-6084.
[8] Hung WC, Tsai JC, Hsueh PR, et al. Species identification of mutans streptococci by groESL gene sequence[J]. J Med Microbiol, 2005, 54(Pt 9):857-862.
[9] Bao F, Gong L, Shao W. Cloning, sequencing and analysis of dnaK-dnaJ gene cluster of Bacillus megaterium[J]. J Basic Microbiol, 2008, 48(6):448-454.
[10] Jhamb K, Sahoo DK. Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase[J]. Bioresour Technol, 2012, 123:135-143.
[11] Matsui R, Cvitkovitch D. Acid tolerance mechanisms utilized by Streptococcus mutans[J]. Future Micro biol, 2010, 5(3):403-417.
[12] Len AC, Harty DW, Jacques NA. Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance[J]. Microbiology, 2004, 150(Pt 5):1339-1351.
[13] Bolean M, Paulino Tde P, Thedei G Jr, et al. Photodynamic therapy with rose bengal induces GroEL expression in Streptococcus mutans[J]. Photomed Laser Surg, 2010, 28(Suppl 1):S79-S84.
[14] Lim B, Miyazaki R, Neher S, et al. Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E.coli[J]. PLoS Biol, 2013, 11(12):e1001735.
[15] Elsholz AK, Michalik S, Zühlke D, et al. CtsR, the Gram-positive master regulator of protein quality control, feels the heat[J]. EMBO J, 2010, 29(21):3621-3629.
[16] Tao L, Chattoraj P, Biswas I. CtsR regulation in mcsAB-deficient Gram-positive bacteria[J]. J Bacteriol, 2012, 194(6):1361-1368.
[17] Baird PN, Hall LM, Coates AR. Cloning and sequence analysis of the 10 kDa antigen gene of Mycobacterium tuberculosis[J]. J Gen Microbiol, 1989, 135(4):931-939.
[18] Wilson AC, Tan M. Stress response gene regulation in Chlamydia is dependent on HrcA-CIRCE interactions[J]. J Bacteriol, 2004, 186(11):3384-3391.
[19] Wilson AC, Wu CC, Yates JR 3rd, et al. Chlamydial GroEL autoregulates its own expression through direct interactions with the HrcA repressor protein [J]. J Bacteriol, 2005, 187(21):7535-7542.
[20] Chang LJ, Chen WH, Minion FC, et al. Mycoplasmas regulate the expression of heat-shock protein genes through CIRCE-HrcA interactions[J]. Biochem Biophys Res Commun, 2008, 367(1):213-218.
[21] Zuber U, Schumann W. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis[J]. J Bacteriol, 1994, 176(5):1359-1363.
[22] López-Larrea C. Sensing in nature. Preface[J]. Adv Exp Med Biol, 2012, 739:v-vvii.
[23] Inoue M, Mitarai N, Trusina A. Circuit architecture explains functional similarity of bacterial heat shock responses[J]. Phys Biol, 2012, 9(6):066003.
[24] Mogk A, Homuth G, Scholz C, et al. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis[J]. EMBO J, 1997, 16(15):4579-4590.
[25] Chen AL, Wilson AC, Tan M. A Chlamydia-specific C-terminal region of the stress response regulator HrcA modulates its repressor activity[J]. J Bacteriol, 2011, 193(23):6733-6741.
[26] Lemos JA, Luzardo Y, Burne RA. Physiologic effects of forced down-regulation of dnaK and groEL expression in Streptococcus mutans[J]. J Bacteriol, 2007, 189(5):1582-1588.
[27] Lemos JA, Burne RA. Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans[J]. J Bacteriol, 2002, 184(22):6357-6366.
[28] van Bokhorst-van de Veen H, Bongers RS, Wels M, et al. Transcriptome signatures of classⅠand Ⅲ stress response deregulation in Lactobacillus plantarum reveal pleiotropic adaptation[J]. Microb Cell Fact, 2013, 18(12):112.
[29] Chastanet A, Msadek T. ClpP of Streptococcus salivarius is a novel member of the dually regulated class of stress response genes in gram-positive bacteria[J]. J Bacteriol, 2003, 185(2):683-687.
[30] Chastanet A, Prudhomme M, Claverys JP, et al. Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival[J]. J Bacteriol, 2001, 183(24):7295-7307.
[31] Chastanet A, Fert J, Msadek T. Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria[J]. Mol Microbiol, 2003, 47(4):1061-1073.
(本文采编 王晴)
[1] Yu Lerong,Li Xiangwei,Ai Hong. Research progress on the stemness maintenance of dental pulp stem cells [J]. Int J Stomatol, 2023, 50(4): 463-471.
[2] Gong Tao,Li Yuqing,Zhou Xuedong.. Research progress on sugar transporter and regulatory mechanisms in Streptococcus mutans [J]. Int J Stomatol, 2022, 49(5): 506-510.
[3] Zhao Manzhu,Song Jinlin. Research progress on expression distribution and regulation mechanism of clock genes in tooth development [J]. Int J Stomatol, 2022, 49(4): 380-385.
[4] Li Shanshan,Yang Fang. Research progress on the relationship between Streptococcus mutans and Candida albicans in caries [J]. Int J Stomatol, 2022, 49(4): 392-396.
[5] Jing Wang,Yan Wang,Chuandong Wang,Ruijie Huang,Yan Tian,Wei Hu,Jing Zou. Application of liquorice and its extract to the prevention and treatment of oral infections and associated diseases [J]. Inter J Stomatol, 2018, 45(5): 546-552.
[6] Chen Haoling, Lin Yujing, Zhu Hui, Yang Tingting, Huang Fang. Effects of melatonin regulating on growth and development of hard tissues [J]. Inter J Stomatol, 2018, 45(2): 185-191.
[7] Xu Xin, Wang Yanmin,Bai Ding. Silent mating type information regulation 2 homolog 1 in bone and cartilage homeostasis [J]. Inter J Stomatol, 2016, 43(5): 569-572.
[8] Zhao Xingfu, Jiang Shan, Huang Xiaojing, Yan Fuhua. Differential expression of surface-associated proteins in clinical isolations of Streptococcus mutans [J]. Inter J Stomatol, 2016, 43(3): 273-277.
[9] Zhou Chen, Ling Junqi. Epigenetics in tooth development and its implication in tooth regeneration [J]. Inter J Stomatol, 2016, 43(3): 318-324.
[10] Shi Jing, Yan Zhengbin, Hou Jingqiu, Peng Hui. Influence of bracketless invisible aligner technique and conventional technique on the number of Streptococcus mutans and Porphyromonas gingivalis [J]. Inter J Stomatol, 2016, 43(2): 151-154.
[11] Zeng Suyun, Wang Jianguang. Effect of phosphatase and tensin homolog gene deleted on chromosome 10 in oral squamous cell carcinoma [J]. Inter J Stomatol, 2015, 42(3): 334-338.
[12] Wu Lamei, Yang Hongyu.. Immunoregulatory effects of natural killer group 2 member D receptor and its ligands on oral tumors [J]. Inter J Stomatol, 2013, 40(5): 695-697.
[13] Meng Yusheng 1,2,Yang Hongyu 1 .. Research progress on killer T cells and immunoregulation of oral tumors [J]. Inter J Stomatol, 2013, 40(2): 241-244.
[14] Chen Yanze1, Shi Ce1, Sun Hongchen1, Lin Chongtao2. . Research progress on transcription factor families regulating mandibular development [J]. Inter J Stomatol, 2012, 39(6): 751-755.
[15] YANG Yun -hao, JIANG Xin-quan, ZHANG Zhi-yuan. . Research advances of the mechanism of Smad signaling regulates the chondrogenesis [J]. Inter J Stomatol, 2010, 37(5): 559-561,565.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .