国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (4): 433-438.doi: 10.7518/gjkq.2021076

• 综述 • 上一篇    下一篇

髓腔通路设计的微创理念及其研究进展

彭玮琪(),高原,徐欣()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院牙体牙髓病科 成都 610041
  • 收稿日期:2021-01-08 修回日期:2021-04-02 出版日期:2021-07-01 发布日期:2021-06-30
  • 通讯作者: 徐欣
  • 作者简介:彭玮琪,硕士,Email: pengwq27@foxmail.com
  • 基金资助:
    国家自然科学基金(81771099);四川省科技厅应用基础研究项目(2019YJ0074)

The minimally invasive concept and research progress on access cavity design

Peng Weiqi(),Gao Yuan,Xu Xin()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-01-08 Revised:2021-04-02 Online:2021-07-01 Published:2021-06-30
  • Contact: Xin Xu
  • Supported by:
    National Natural Science Foundation of China(81771099);Applied Basic Research Foundation of Sichuan Science and Technology Department(2019YJ0074)

摘要:

牙髓病和根尖周病是临床常见的口腔疾病,根管治疗是治疗这类疾病最有效的手段。髓腔通路预备即开髓,是根管治疗的首要步骤,一个设计良好的髓腔通路对于根管治疗的成功至关重要。近年来随着微创牙髓治疗学概念的提出,学者们建议对传统髓腔通路设计进行微创改良,强调有目的性地保留部分髓室顶及颈周牙本质的精细开髓,以尽可能保存健康牙体组织。虽然微创髓腔通路设计减少了牙颈部区域的应力集中,但目前没有明显的证据支持其可以提高根管治疗后牙齿的抗折性能,且微创开髓可能使治疗复杂化,增加根管治疗的难度,存在影响根管治疗效果和增加医源性损伤的风险。本文就髓腔通路设计的微创理念及其在根管治疗效果和牙齿抗折性能方面的研究进展作一综述。

关键词: 微创牙髓治疗, 牙体保存, 髓腔通路, 根管治疗, 抗折性能

Abstract:

Pulp and periapical diseases are common clinical oral diseases, and root canal therapy is the most effective option for these diseases. Access cavity preparation is the first step of root canal therapy. A well-designed access cavity is crucial to the success of root canal therapy. In recent years, with the concept of minimally invasive endodontics proposed, a minimally invasive improvement of traditional endodontic cavities is recommended, which emphasizes the purposeful preservation of part of the chamber roof and peri-cervical dentin to preserve the healthy tooth tissue as much as possible. Although minimal access cavity designs can reduce the stress concentration in the cervical regions, evidence on its improvement of the fracture resistance of the endodontically treated teeth is lacking. Moreover, minimally invasive access may complicate treatment and increase the difficulty of root canal therapy, which may affect the effect of root canal therapy and increase the prevalence of iatrogenic complications during endodontic procedures. This article reviews the minimally invasive concept of access cavity design and its research progress in the effect of root canal therapy and fracture resistance of teeth.

Key words: minimally invasive endodontics, preservation of tooth structure, endodontic cavity, root canal therapy, fracture resistance

中图分类号: 

  • R781.05
[1] Yahata Y, Masuda Y, Komabayashi T. Comparison of apical centring ability between incisal-shifted access and traditional lingual access for maxillary anterior teeth[J]. Aust Endod J, 2017,43(3):123-128.
doi: 10.1111/aej.2017.43.issue-3
[2] Patel S, Rhodes J. A practical guide to endodontic access cavity preparation in molar teeth[J]. Br Dent J, 2007,203(3):133-140.
pmid: 17694021
[3] Schroeder KP, Walton RE, Rivera EM. Straight line access and coronal flaring: effect on canal length[J]. J Endod, 2002,28(6):474-476.
doi: 10.1097/00004770-200206000-00015
[4] Gutmann JL. Minimally invasive dentistry (Endo-dontics)[J]. J Conserv Dent, 2013,16(4):282-283.
doi: 10.4103/0972-0707.114342
[5] Bürklein S, Schäfer E. Minimally invasive endodontics[J]. Quintessence Int, 2015,46(2):119-124.
[6] Al Amri MD, Al-Johany S, Sherfudhin H, et al. Fracture resistance of endodontically treated mandibular first molars with conservative access cavity and different restorative techniques: an in vitro study[J]. Aust Endod J, 2016,42(3):124-131.
doi: 10.1111/aej.2016.42.issue-3
[7] Lang H, Korkmaz Y, Schneider K, et al. Impact of endodontic treatments on the rigidity of the root[J]. J Dent Res, 2006,85(4):364-368.
pmid: 16567560
[8] Tzimpoulas NE, Alisafis MG, Tzanetakis GN, et al. A prospective study of the extraction and retention incidence of endodontically treated teeth with uncertain prognosis after endodontic referral[J]. J Endod, 2012,38(10):1326-1329.
doi: 10.1016/j.joen.2012.06.032 pmid: 22980171
[9] Ibrahim AM, Richards LC, Berekally TL. Effect of remaining tooth structure on the fracture resistance of endodontically-treated maxillary premolars: an in vitro study[J]. J Prosthet Dent, 2016,115(3):290-295.
doi: 10.1016/j.prosdent.2015.08.013
[10] Santos Pantaleón D, Morrow BR, Cagna DR, et al. Influence of remaining coronal tooth structure on fracture resistance and failure mode of restored endodontically treated maxillary incisors[J]. J Prosthet Dent, 2018,119(3):390-396.
doi: S0022-3913(17)30363-3 pmid: 28756865
[11] Clark D, Khademi JA. Case studies in modern molar endodontic access and directed dentin conservation[J]. Dent Clin North Am, 2010,54(2):275-289.
doi: 10.1016/j.cden.2010.01.003
[12] Clark D, Khademi J. Modern molar endodontic access and directed dentin conservation[J]. Dent Clin North Am, 2010,54(2):249-273.
doi: 10.1016/j.cden.2010.01.001
[13] 蒋宏伟. 微创牙髓治疗的理论与实践[J]. 中华口腔医学杂志, 2016,51(8):460-464.
Jiang HW. Theory and practice of minimally inva-sive endodontics[J]. Chin J Stomatol, 2016,51(8):460-464.
[14] Krishan R, Paqué F, Ossareh A, et al. Impacts of conservative endodontic cavity on root canal instrumentation efficacy and resistance to fracture assessed in incisors, premolars, and molars[J]. J Endod, 2014,40(8):1160-1166.
doi: 10.1016/j.joen.2013.12.012 pmid: 25069925
[15] Plotino G, Grande NM, Isufi A, et al. Fracture streng-th of endodontically treated teeth with different access cavity designs[J]. J Endod, 2017,43(6):995-1000.
doi: 10.1016/j.joen.2017.01.022
[16] Corsentino G, Pedullà E, Castelli L, et al. Influence of access cavity preparation and remaining tooth substance on fracture strength of endodontically treated teeth[J]. J Endod, 2018,44(9):1416-1421.
doi: S0099-2399(18)30351-0 pmid: 30049468
[17] Neelakantan P, Khan K, Hei Ng GP, et al. Does the orifice-directed dentin conservation access design debride pulp chamber and mesial root canal systems of mandibular molars similar to a traditional access design[J]. J Endod, 2018,44(2):274-279.
doi: S0099-2399(17)31191-3 pmid: 29273493
[18] Krastl G, Zehnder MS, Connert T, et al. Guided endodontics: a novel treatment approach for teeth with pulp canal calcification and apical pathology[J]. Dent Traumatol, 2016,32(3):240-246.
doi: 10.1111/edt.2016.32.issue-3
[19] Connert T, Zehnder MS, Amato M, et al. Microguided endodontics: a method to achieve minimally invasive access cavity preparation and root canal location in mandibular incisors using a novel computer-guided technique[J]. Int Endod J, 2018,51(2):247-255.
doi: 10.1111/iej.12809 pmid: 28665514
[20] Bóveda C, Kishen A. Contracted endodontic cavities: the foundation for less invasive alternatives in the management of apical periodontitis[J]. Endod Top, 2015,33(1):169-186.
doi: 10.1111/etp.2015.33.issue-1
[21] Rover G, Belladonna FG, Bortoluzzi EA, et al. Influence of access cavity design on root canal detection, instrumentation efficacy, and fracture resistance assessed in maxillary molars[J]. J Endod, 2017,43(10):1657-1662.
doi: 10.1016/j.joen.2017.05.006
[22] Saygili G, Uysal B, Omar B, et al. Evaluation of relationship between endodontic access cavity types and secondary mesiobuccal canal detection[J]. BMC Oral Health, 2018,18(1):121.
doi: 10.1186/s12903-018-0570-y pmid: 29980211
[23] Mendes EB, Soares AJ, Martins JNR, et al. Influence of access cavity design and use of operating microscope and ultrasonic troughing to detect middle mesial canals in extracted mandibular first molars[J]. Int Endod J, 2020,53(10):1430-1437.
doi: 10.1111/iej.v53.10
[24] 张萦雪. 微创牙髓治疗对根管内细菌清理效果的体外研究[D]. 天津: 天津医科大学口腔医学院, 2019.
Zhang YX. The effect of minimally invasive endo-dontics treatment on bacterial clearance in root ca-nal: an in vitro study[D]. Tianjin: School of Stoma-tology,Tianjin Medical University, 2019.
[25] Vieira GCS, Pérez AR, Alves FRF, et al. Impact of contracted endodontic cavities on root canal disinfection and shaping[J]. J Endod, 2020,46(5):655-661.
doi: S0099-2399(20)30083-2 pmid: 32201072
[26] Tüfenkçi P, Yılmaz K. The effects of different en-dodontic access cavity design and using XP-endo finisher on the reduction of enterococcus faecalis in the root canal system[J]. J Endod, 2020,46(3):419-424.
doi: S0099-2399(19)30916-1 pmid: 31980201
[27] Moore B, Verdelis K, Kishen A, et al. Impacts of contracted endodontic cavities on instrumentation efficacy and biomechanical responses in maxillary molars[J]. J Endod, 2016,42(12):1779-1783.
doi: 10.1016/j.joen.2016.08.028
[28] Eaton JA, Clement DJ, Lloyd A, et al. Micro-computed tomographic evaluation of the influence of root canal system landmarks on access outline forms and canal curvatures in mandibular molars[J]. J Endod, 2015,41(11):1888-1891.
doi: 10.1016/j.joen.2015.08.013
[29] Alovisi M, Pasqualini D, Musso E, et al. Influence of contracted endodontic access on root canal geometry: an in vitro study[J]. J Endod, 2018,44(4):614-620.
doi: S0099-2399(17)31237-2 pmid: 29336881
[30] Trivedi S. Finite element analysis: a boon to dentistry[J]. J Oral Biol Craniofac Res, 2014,4(3):200-203.
doi: 10.1016/j.jobcr.2014.11.008 pmid: 25737944
[31] 刘子嫣, 赵凌, 杨丽媛, 等. 开髓方式与全冠修复对上颌中切牙应力分布影响的三维有限元分析[J]. 华西口腔医学杂志, 2019,37(6):642-647.
Liu ZY, Zhao L, Yang LY, et al. Three-dimensional finite element analysis of different endodontic access methods and full crown restoration in the maxillary central incisor[J]. West China J Stomatol, 2019,37(6):642-647.
[32] Yuan K, Niu C, Xie Q, et al. Comparative evaluation of the impact of minimally invasive preparation vs. conventional straight-line preparation on tooth biomechanics: a finite element analysis[J]. Eur J Oral Sci, 2016,124(6):591-596.
doi: 10.1111/eos.2016.124.issue-6
[33] Allen C, Meyer CA, Yoo E, et al. Stress distribution in a tooth treated through minimally invasive access compared to one treated through traditional access: a finite element analysis study[J]. J Conserv Dent, 2018,21(5):505-509.
doi: 10.4103/JCD.JCD_260_18
[34] Jiang Q, Huang Y, Tu X, et al. Biomechanical properties of first maxillary molars with different endodontic cavities: a finite element analysis[J]. J Endod, 2018,44(8):1283-1288.
doi: 10.1016/j.joen.2018.04.004
[35] Zhang YY, Liu YX, She YH, et al. The effect of endodontic access cavities on fracture resistance of first maxillary molar using the extended finite element method[J]. J Endod, 2019,45(3):316-321.
doi: S0099-2399(18)30836-7 pmid: 30803539
[36] Makati D, Shah NC, Brave D, et al. Evaluation of remaining dentin thickness and fracture resistance of conventional and conservative access and biomecha-nical preparation in molars using cone-beam computed tomography: an in vitro study[J]. J Conserv Dent, 2018,21(3):324-327.
doi: 10.4103/JCD.JCD_311_17
[37] Chlup Z, Žižka R, Kania J, et al. Fracture behaviour of teeth with conventional and mini-invasive access cavity designs[J]. J Eur Ceram Soc, 2017,37(14):4423-4429.
doi: 10.1016/j.jeurceramsoc.2017.03.025
[38] Sabeti M, Kazem M, Dianat O, et al. Impact of access cavity design and root canal taper on fracture resistance of endodontically treated teeth: an ex vivo investigation[J]. J Endod, 2018,44(9):1402-1406.
doi: 10.1016/j.joen.2018.05.006
[39] Barbosa AFA, Silva EJNL, Coelho BP, et al. The influence of endodontic access cavity design on the efficacy of canal instrumentation, microbial reduction, root canal filling and fracture resistance in mandibular molars[J]. Int Endod J, 2020,53(12):1666-1679.
doi: 10.1111/iej.v53.12
[40] Özyürek T, Ülker Ö, Demiryürek EÖ, et al. The effects of endodontic access cavity preparation design on the fracture strength of endodontically treated tee-th: traditional versus conservative preparation[J]. J Endod, 2018,44(5):800-805.
doi: S0099-2399(18)30077-3 pmid: 29571907
[41] Silva EJNL, Rover G, Belladonna FG, et al. Impact of contracted endodontic cavities on fracture resistance of endodontically treated teeth: a systematic review of in vitro studies[J]. Clin Oral Investig, 2018,22(1):109-118.
doi: 10.1007/s00784-017-2268-y
[1] 李米雪子,张琛. 椅旁计算机辅助设计/计算机辅助制作髓腔固位冠修复根管治疗后磨牙的临床考量[J]. 国际口腔医学杂志, 2021, 48(3): 274-279.
[2] 谭凯璇,李帆,张利娟,李姗姗,卢洁,张颖,杨芳. 根管再治疗并发皮下气肿1例[J]. 国际口腔医学杂志, 2020, 47(5): 563-566.
[3] 唐蓓,赵文俊,王虎,郑广宁,游梦. 根管超填导致下牙槽神经损伤2例[J]. 国际口腔医学杂志, 2020, 47(3): 293-296.
[4] 许庆安,樊明文. 非器械根管治疗与多声波超洁净系统[J]. 国际口腔医学杂志, 2019, 46(5): 522-525.
[5] 黄丽东, 宫玮玉, 董艳梅. 根管冲洗的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 465-472.
[6] 马艳群, 李红, 侯本祥. 根尖周膜新附着的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 331-334.
[7] 黄晓想, 张茹, 侯本祥. 恒牙根尖区解剖结构对根管治疗的影响[J]. 国际口腔医学杂志, 2017, 44(3): 261-266.
[8] 李儒煌,王霄. 根尖手术预后影响因素的研究进展[J]. 国际口腔医学杂志, 2016, 43(6): 721-724.
[9] 梁继超 王芬 张凤英 张正华 侯梅娟 庞富生 周锋. Digora及Propex测量根管工作长度准确性的比较研究[J]. 国际口腔医学杂志, 2016, 43(5): 515-518.
[10] 鞠迎新,刘鲁川. 铒激光在根尖周病治疗中的应用[J]. 国际口腔医学杂志, 2016, 43(4): 473-476.
[11] 高静,申静,张海峰,靳淑凤. 锥形束CT与根尖片对实验性根尖周炎根管治疗结果的评估[J]. 国际口腔医学杂志, 2016, 43(3): 292-294.
[12] 邹慧儒,秦宗长. 下颌前牙根管形态的研究进展[J]. 国际口腔医学杂志, 2016, 43(3): 325-328.
[13] 谢克贤 王霄 黎远皋 张平. 伴随根管内钙化物形成的牙根内吸收治疗1例[J]. 国际口腔医学杂志, 2015, 42(6): 628-630.
[14] 赵朋朋,刘志顺,秦宗长. 上颌侧切牙2根2根管1例[J]. 国际口腔医学杂志, 2015, 42(5): 562-563.
[15] 张瑞瑞 孙克勤. 根管治疗后疾病中粪肠球菌的致病性和检测及清除[J]. 国际口腔医学杂志, 2015, 42(3): 357-360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 冯璐,孟文霞. 常见口腔黏膜疾病患者行种植修复相关问题的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 147 -155 .
[2] 王立冬,马文,付帅,张长彬,崔庆赢,梁燕,黎明. 不同方法制作正颌手术数字化牙合板的研究及精确性分析[J]. 国际口腔医学杂志, 2021, 48(2): 156 -164 .
[3] 李米雪子,张琛. 椅旁计算机辅助设计/计算机辅助制作髓腔固位冠修复根管治疗后磨牙的临床考量[J]. 国际口腔医学杂志, 2021, 48(3): 274 -279 .
[4] 赵吉宏. 口腔局部麻醉新概念[J]. 国际口腔医学杂志, 2021, 48(4): 373 -379 .
[5] 朱轩智,赵蕾. 甲状腺功能减退症与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 380 -384 .
[6] 丁旭,李鑫,李艳,夏博园,于维先. 氧化应激和线粒体质量控制与牙周炎关系的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 385 -390 .
[7] 赵文俊,陈宇. 引导组织/骨再生牙周功能梯度膜的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 391 -397 .
[8] 施丹妮,杨鑫,吴建勇. 锥形束CT三维头影测量参考坐标系的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 398 -404 .
[9] 邵冰婷,曹丹,严斌. 影像学预测上颌尖牙阻生的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 405 -410 .
[10] 杨祺,郭丽娟. 自体脂肪移植联合唇部组织瓣在修复唇萎缩畸形缺损中的应用[J]. 国际口腔医学杂志, 2021, 48(4): 411 -416 .