国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (5): 526-531.doi: 10.7518/gjkq.2019087

• 论著 • 上一篇    下一篇

钴铬合金和聚醚醚酮用于可摘局部义齿支架的三维有限元分析

陈昕,毛渤淳,鲁雨晴,董博,朱卓立,岳莉,于海洋()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院修复Ⅱ科 成都 610041
  • 收稿日期:2019-01-22 修回日期:2019-06-08 出版日期:2019-09-01 发布日期:2019-09-10
  • 通讯作者: 于海洋 E-mail:yhyang6812@foxmail.com
  • 作者简介:陈昕,硕士,Email:chenxin. scu@foxmail.com
  • 基金资助:
    国家自然科学基金(81771113)

Research on mechanical property of Co-Cr alloy and polyetheretherketone frameworks of removable partial denture: a three-dimensional finite element analysis

Chen Xin,Mao Bochun,Lu Yuqing,Dong Bo,Zhu Zhuoli,Yue Li,Yu Haiyang()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics II, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2019-01-22 Revised:2019-06-08 Online:2019-09-01 Published:2019-09-10
  • Contact: Haiyang Yu E-mail:yhyang6812@foxmail.com
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81771113)

摘要:

目的 对比钴铬合金和聚醚醚酮(PEEK)制作的可摘局部义齿支架,对患者基牙、黏膜形变及支架受力的影响。方法 选择肯氏Ⅰ类缺失患者1例,通过锥形束计算机断层(CBCT)扫描、口内石膏模型扫描,EXO-CAD软件设计2种可摘局部义齿,Mimics、Geo-magic studio与Abaqus/CAE软件处理模型进行三维有限元分析。分别对支架加载钴铬合金与聚醚醚酮材料。观察基牙、黏膜形变及支架受力的情况。结果 PEEK支架的基牙最大形变量小于钴铬合金,且均分布于牙槽窝;黏膜最大位移量大于钴铬合金,且均分布于缺牙区远端;支架受力小于钴铬合金,且力的分布更加均匀。结论 对于牙列远中游离缺失的患者,PEEK制作的支架具有一定的保护基牙和牙周膜的作用,并且支架内部的应力更小、更均匀;但其对缺牙区黏膜和牙槽骨的压力更大,不适合黏膜和骨质较差的患者。

关键词: 聚醚醚酮, 钴铬合金, 可摘局部义齿, 三维有限元分析

Abstract:

Objective To compare the different displacement of cobalt-chromium (Co-Cr) alloy and polyetheretherketone (PEEK) frameworks of removable partial denture (RPD) on a patient’s abutment teeth, mucosa and the stress distribution on the frameworks. Methods A patient with Kennedy Class Ⅰ was chosen. The RPD in vivo model with two different framework materials was built by the scanned data of the cone beam computed tomography (CBCT) and master models, which were processed by Mimics, Geo- magic studio, EXO-CAD and Abaqus/CAE. The displacement and stress distribution of the models were investigated. Results The maximum displacement of abutment teeth and the stress on the PEEK framework were smaller than that of Co-Cr alloy. The maximum mucosa displacement of the PEEK framework was larger than that of Co-Cr alloy, with an even distribution. Conclusion For patients with distal-extension absence defect, the PEEK framework can protect the abutment teeth and periodontal ligament. Stress is even and relatively small inside the framework. However, the PEEK framework will increase the stress on the mucosa of the edentulous ridge, which is harmful for patients with bad mucosa and bone loss condition.

Key words: polyetheretherketone, Co-Cr alloy, removable partial denture, three-dimensional finite element analysis

中图分类号: 

  • R783.1

图 1

有限元模型构建过程"

图 2

可摘局部义齿支架设计 支架1:下颌左侧尖牙设计A型卡环,下颌右侧前磨牙设计联合卡环;支架2:下颌左侧尖牙设计RPT卡环组,下颌右侧第一前磨牙设计RPL卡环组,下颌右侧第二前磨牙设计A型卡环。"

表 1

网格化后各模型节点数与单元格数"

模型 节点数 单元格数
颌骨 21 089 96 388
黏膜 107 848 522 017
余留牙 17 784 83 941
牙周膜 1 786 1 825
支架 支架1 62 049 243 121
支架2 60 569 237 101
基托 支架1基托 46 312 193 128
支架2基托 45 577 190 160
人工牙 支架1人工牙 31 521 140 673
支架2人工牙 37 252 167 984

表 2

各模型材料的力学参数"

材料 弹性模量/MPa 泊松比
黏膜 3.45 0.45
基托 2 200 0.31
骨松质 1 370 0.30
骨密质 13 700 0.30
牙周膜 非线性(见下文所述) 0.45
天然牙(牙本质) 18 600 0.30
人工牙 1 960 0.30
钴铬合金 235 000 0.33
PEEK 4 100 0.40

图 3

基牙位移、黏膜位移及支架受力情况 A~D:基牙位移;E~H:黏膜位移;I~L:支架受力。A、E、I:支架1(钴铬合金);B、F、J:支架1(PEEK);C、G、K:支架2(钴铬合金);D、H、L:支架2(PEEK)。"

表 3

各模型加载后位移及受力结果"

测量项目 支架1 支架2
钴铬合金 PEEK 钴铬合金 PEEK
基牙位移/μm 179.7 163.0 128.0 106.1
黏膜位移/mm 0.400 6 0.631 6 0.427 2 0.643 0
支架受力/MPa 446.2 92.4 388.8 72.8
[1] Campbell SD, Cooper L, Craddock H , et al. Removable partial dentures: the clinical need for innovation[J]. J Prosthet Dent, 2017,118(3):273-280.
[2] Hu F, Pei ZH, Wen Y . Using intraoral scanning technology for three-dimensional printing of Kennedy Class Ⅰ removable partial denture metal framework: a clinical report[J]. J Prosthodont, 2019,28(2):e473-e476.
[3] Keys W . Book review: McCracken’s removable partial prosthodontics, 13th edition[J]. Br Dent J, 2017,223(5):316.
[4] Wiesli MG, Özcan M . High-performance polymers and their potential application as medical and oral implant materials[J]. Implant Dent, 24(4):448-457.
[5] Olivares-Navarrete R, Hyzy SL, Slosar PJ , et al. Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors[J]. Spine, 2015,40(6):399-404.
[6] Hahnel S, Wieser A, Lang R , et al. Biofilm formation on the surface of modern implant abutment materials[J]. Clin Oral Implant Res, 2015,26(11):1297-1301.
[7] Stawarczyk B, Eichberger M, Uhrenbacher J , et al. Three-unit reinforced polyetheretherketone composite FDPs: influence of fabrication method on load-bearing capacity and failure types[J]. Dent Mater J, 2015,34(1):7-12.
[8] Tannous F, Steiner M, Shahin R , et al. Retentive forces and fatigue resistance of thermoplastic resin clasps[J]. Dent Mater, 2012,28(3):273-278.
[9] Zoidis P, Papathanasiou I, Polyzois G . The use of a modified poly-ether-ether-ketone (PEEK) as an alternative framework material for removable dental prostheses. A clinical report[J]. J Prosthodont, 2016,25(7):580-584.
[10] Harb IE, Abdel-Khalek EA, Hegazy SA . CAD/CAM constructed poly(etheretherketone) (PEEK) framework of Kennedy Class Ⅰ removable partial denture: a clinical report[J]. J Prosthodont, 2019,28(2):e595-e598.
[11] Geramy A, Sharafoddin F . Abfraction: 3D analysis by means of the finite element method[J]. Quintessence Int, 2003,34(7):526-533.
[12] Radovic K, Cairovic A, Todorovic A , et al. Comparative analysis of unilateral removable partial denture and classical removable partial denture by using finite element method[J]. Srp Arh Za Celok Lek, 2010,138(11/12):706-713.
[13] Kanbara R, Nakamura Y, Ochiai KT , et al. Three-dimensional finite element stress analysis: the technique and methodology of non-linear property simulation and soft tissue loading behavior for different partial denture designs[J]. Dent Mater J, 2012,31(2):297-308.
[14] Eskitascioglu G, Usumez A, Sevimay M , et al. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: a three-dimensional finite element study[J]. J Prosthet Dent, 2004,91(2):144-150.
[15] 王淑英, 张振庭, 白保晶 , 等. 钴铬合金与金合金铸造三臂卡环的三维有限元对比分析[J]. 现代口腔医学杂志, 2006,20(1):69-71.
Wang SY, Zhang ZT, Bai BJ , et al. Comparative analysis of stress of the retetion arms between the cast Co-Cr alloy and the cast of gold alloy clasps using the three-dimensional finite element method[J]. J Modern Stomatol, 2006,20(1):69-71.
[16] Nishigawa G, Matsunaga T, Maruo Y , et al. Finite element analysis of the effect of the bucco-lingual position of artificial posterior teeth under occlusal force on the denture supporting bone of the edentulous patient[J]. J Oral Rehabil, 2003,30(6):646-652.
[17] Vollmer D, Bourauel C, Maier K , et al. Determination of the centre of resistance in an upper human canine and idealized tooth model[J]. Eur J Orthod, 1999,21(6):633-648.
[18] Curtis R, Watson T . Preface[M] //Curtis R, Watson T. Dental Biomaterials. Cambridge: Elsevier, 2008: 37.
[19] Yettram AL, Wright KW, Houston WJ . Centre of rotation of a maxillary central incisor under orthodontic loading[J]. Br J Orthod, 1977,4(1):23-27.
[20] Panayotov IV, Orti V, Cuisinier F , et al. Polyetheretherketone (PEEK) for medical applications[J]. J Mater Sci Mater Med, 2016,27(7):118.
[21] Ichim I, Kieser JA, Swain MV . Functional significance of strain distribution in the human mandible under masticatory load: numerical predictions[J]. Arch Oral Biol, 2007,52(5):465-473.
[22] Gröning F, Fagan MJ , O’Higgins P. The effects of the periodontal ligament on mandibular stiffness: a study combining finite element analysis and geometric morphometrics[J]. J Biomech, 2011,44(7):1304-1312.
[23] Sato Y, Yuasa Y, Akagawa Y , et al. An investigation of preferable taper and thickness ratios for cast circumferential clasp arms using finite element analysis[J]. Int J Prosthodont, 1995,8(4):392-397.
[24] Sato Y, Tsuga K, Abe Y , et al. Finite element analysis on preferable I-bar clasp shape[J]. J Oral Rehabil, 2001,28(5):413-417.
[1] 张婧婷,潘旭东,张文云. 遮色层厚度对聚醚醚酮-Crea.lign修复体颜色的影响[J]. 国际口腔医学杂志, 2020, 47(4): 418-423.
[2] 鲁雨晴,闵婕,陈昕,刘春煦,董博,岳莉,于海洋. 整体切削的聚醚醚酮可摘局部义齿即刻修复1例[J]. 国际口腔医学杂志, 2020, 47(3): 297-303.
[3] 于婉琦,周延民,赵静辉. 口腔种植体新材料的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 488-496.
[4] 秦胜男,贾慧,李英. 聚醚醚酮在口腔临床中的应用现状[J]. 国际口腔医学杂志, 2018, 45(6): 652-656.
[5] 陈曦,于海洋. 聚醚醚酮在口腔种植与修复领域的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 657-665.
[6] 曾婷艳, 黄生高. 种植体支抗稳定性的三维有限元分析[J]. 国际口腔医学杂志, 2018, 45(1): 112-118.
[7] 秦琨1 张东坡2. 不同材料烤瓷冠与金属冠磁共振成像伪影的比较[J]. 国际口腔医学杂志, 2016, 43(5): 507-510.
[8] 关卿 金涛 顾永春 杨犇 倪龙兴. 3种根管预备器械在弯曲根管中扭转负载下的三维有限元分析[J]. 国际口腔医学杂志, 2015, 42(3): 269-272.
[9] 郭晶 甘抗 刘红. 聚醚醚酮复合材料及其表面改性后的成骨效能[J]. 国际口腔医学杂志, 2014, 41(4): 436-439.
[10] 王密 尹仕海 唐寅 刘佳. 钴铬合金嵌体修复磨牙髓室底穿孔的体外研究[J]. 国际口腔医学杂志, 2011, 38(3): 261-264.
[11] 王伟嘉1 龙刚2 胡嘉伟3 何瑞华4 孙勇4. 钴铬合金和钛基台与全瓷冠间粘接界面的三维有限元应力分析[J]. 国际口腔医学杂志, 2011, 38(1): 10-13.
[12] 王菁综述 郭天文审校. 外胚叶发育不全综合征患儿的口腔修复治疗进展[J]. 国际口腔医学杂志, 2010, 37(6): 727-731.
[13] 陈哂媛1,巢永烈1,邓咏梅2,陈超3,李苑1,张书垣1. 成都市老年人可摘局部义齿戴用情况和修复效果调查[J]. 国际口腔医学杂志, 2010, 37(4): 396-399.
[14] 刘智永综述 熊世江审校. 三维有限元分析法在根管治疗中的应用[J]. 国际口腔医学杂志, 2009, 36(5): 604-606.
[15] 董聪综述 张富强审校. 可摘局部义齿对口腔微生态系的影响[J]. 国际口腔医学杂志, 2008, 35(1): 71-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 李子夏,包广洁. 龋病病因相关因素的激光扫描共聚焦显微镜研究[J]. 国际口腔医学杂志, 2008, 35(S1): .