国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (6): 687-692.doi: 10.7518/gjkq.2019080

• 综述 • 上一篇    下一篇

原子力显微镜在细菌黏附力学研究中的应用

王蕊,盖阔,刘梦齐,蒋丽()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院全科门诊 成都 610041
  • 收稿日期:2019-03-21 修回日期:2019-07-17 出版日期:2019-11-01 发布日期:2019-11-14
  • 通讯作者: 蒋丽 E-mail:echojiang999@sina.com
  • 作者简介:王蕊,学士,Email: 878926538@qq.com
  • 基金资助:
    四川省科技计划项目(2016FZ0069)

Role of atomic force microscopy in research on microbial adhesion force

Wang Rui,Gai Kuo,Liu Mengqi,Jiang Li()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2019-03-21 Revised:2019-07-17 Online:2019-11-01 Published:2019-11-14
  • Contact: Li Jiang E-mail:echojiang999@sina.com
  • Supported by:
    The study was supported by Sichuan Science and Technology Program(2016FZ0069)

摘要:

原子力显微镜作为重要的表面成像及力学探测工具,凭借其纳米级(nm)时空分辨率、皮牛级(pN)力灵敏度、液相环境等优势在微生物形貌力学探测中发挥了重要作用。本文简述了基于原子力显微镜的多种成像模式、力谱技术及二者相结合应用的最新进展,并综述了近年来原子力显微镜在细菌与基底、细菌与细菌及细菌与细菌生物膜的黏附力学特性研究方面的应用,为细菌黏附力学的深入研究提供了新思路。

关键词: 原子力显微镜, 细菌黏附, 相互作用力

Abstract:

As a powerful tool for surface imaging and mechanical detection, atomic force microscopy (AFM) plays an important role in the exploration of microbial morphology and mechanics because of its advantages of nanometre resolution, piconewton force sensitivity and liquid imaging. This paper outlines the latest advances in various imaging modes and force spectroscopies and the cooperation of these technologies based on AFM. It also introduces the applications of AFM in the study of adhesive mechanical properties between bacteria and substrates, bacteria and bacteria, bacteria and bacteria biofilms, thereby providing a new way to research bacteria adhesion mechanics.

Key words: atomic force microscopy, bacterial adhesion, interaction force

中图分类号: 

  • R37
[1] Zhang S, Aslan H, Besenbacher F , et al. Quantitative biomolecular imaging by dynamic nanomechanical mapping[J]. Chem Soc Rev, 2014,43(21):7412-7429.
[2] Garcia R, Herruzo ET . The emergence of multifre-quency force microscopy[J]. Nat Nanotechnol, 2012,7(4):217-226.
[3] Fantner GE, Barbero RJ, Gray DS , et al. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force micros-copy[J]. Nat Nanotechnol, 2010,5(4):280-285.
[4] Benning FMC, Sakiyama Y, Mazur A , et al. High-speed atomic force microscopy visualization of the dynamics of the multienzyme fatty acid synthase[J]. ACS Nano, 2017,11(11):10852-10859.
[5] Abu-Lail NI, Camesano TA . Specific and nonspecific interaction forces between Escherichia coli and silicon nitride, determined by poisson statistical analysis[J]. Langmuir, 22(17):7296-7301.
[6] Eskhan AO, Abu-Lail NI . A new approach to de-coupling of bacterial adhesion energies measured by AFM into specific and nonspecific components[J]. Colloid Polym Sci, 2014,292(2):343-353.
[7] El-Kirat-Chatel S, Puymege A, Duong TH , et al. Phenotypic heterogeneity in attachment of marine bacteria toward antifouling copolymers unraveled by AFM[J]. Front Microbiol, 2017,8:1399.
[8] Rosenthal K, Oehling V, Dusny C , et al. Beyond the bulk: disclosing the life of single microbial cells[J]. FEMS Microbiol Rev, 2017,41(6):751-780.
[9] Beaussart A, El-Kirat-Chatel S, Herman P, et al. Sin-gle-cell force spectroscopy of probiotic bacteria[J]. Biophys J, 2013,104(9):1886-1892.
[10] El-Kirat-Chatel S, Beaussart A . Probing bacterial adhesion at the single-molecule and single-cell levels by AFM-based force spectroscopy[J]. Methods Mol Biol, 2018,1814:403-414.
[11] De Keersmaecker H, Frederickx W, Fujita Y , et al. Correlative atomic force and single-molecule fluore-scence microscopy of nucleoprotein complexes[J]. Methods Mol Biol, 2018,1814:339-359.
[12] Dufrêne YF, Martínez-Martín D, Medalsy I , et al. Multiparametric imaging of biological systems by force-distance curve-based AFM[J]. Nat Methods, 2013,10(9):847-854.
[13] Koehler M, Macher G, Rupprecht A , et al. Combined recognition imaging and force spectroscopy: a new mode for mapping and studying interaction sites at low lateral density[J]. Sci Adv Mater, 2017,9(1):128-134.
[14] Mei L, Ren Y, Busscher HJ , et al. Poisson analysis of streptococcal bond-strengthening on saliva-coated enamel[J]. J Dent Res, 2009,88(9):841-845.
[15] Sullan RM, Li JK, Crowley PJ , et al. Binding forces of Streptococcus mutans P1 adhesin[J]. ACS Nano, 2015,9(2):1448-1460.
[16] Heim KP, Sullan RM, Crowley PJ , et al. Identification of a supramolecular functional architecture of Stre-ptococcus mutans adhesin P1 on the bacterial cell surface[J]. J Biol Chem, 2015,290(14):9002-9019.
[17] Cross SE, Kreth J, Zhu L , et al. Nanomechanical properties of glucans and associated cell-surface adhesion of Streptococcus mutans probed by atomic force microscopy under in situ conditions[J]. Micro-biology, 2007,153(Pt 9):3124-3132.
[18] Bank TL, Dosen A, Giese RF , et al. Atomic force spectroscopy evidence of non-specific adhesion of Aggregatibacter actinomycetemcomitans[J]. J Nanosci Nanotechnol, 2011,11(10):8450-8456.
[19] Mei L, Busscher HJ, van der Mei HC, et al. Influence of surface roughness on streptococcal adhesion forces to composite resins[J]. Dent Mater, 2011,27(8):770-778.
[20] Yu P, Wang C, Zhou J , et al. Influence of surface properties on adhesion forces and attachment of Stre-ptococcus mutans to zirconia in vitro[J]. Biomed Res Int, 2016,2016:8901253.
[21] Verran J, Jackson S, Coulthwaite L , et al. The effect of dentifrice abrasion on denture topography and the subsequent retention of microorganisms on abraded surfaces[J]. J Prosthet Dent, 2014,112(6):1513-1522.
[22] Wang C, Zhao Y, Zheng S , et al. Effect of enamel morphology on nanoscale adhesion forces of strepto-coccal bacteria: an AFM study[J]. Scanning, 2015,37(5):313-321.
[23] Mei L, van der Mei HC, Ren Y , et al. Poisson analysis of streptococcal bond strengthening on stainless steel with and without a salivary conditioning film[J]. Langmuir, 2009,25(11):6227-6231.
[24] Fang J, Wang C, Li Y , et al. Comparison of bacterial adhesion to dental materials of polyethylene tereph-thalate (PET) and polymethyl methacrylate (PMMA) using atomic force microscopy and scanning electron microscopy[J]. Scanning, 2016,38(6):665-670.
[25] 蒋丽, 王传勇, 薛晶, 等 . 钛及氧化锆种植材料表面微观形貌对龈下细菌黏附力的影响[C]. 第八届全国口腔材料学术交流会, 上海, 2013-8-17.
Jiang L, Wang CY, Xue J , et al. Influence of surface microstucture on subginvial bacterial adhesion force to titanium and zirconia implant materials[C]. The 8th National Symposium on Dental Metarials,Shan-ghai, 2013-8-17.
[26] Feuillie C, Formosa-Dague C, Hays LM , et al. Mole-cular interactions and inhibition of the staphylococcal biofilm-forming protein SdrC[J]. Proc Natl Acad Sci USA, 2017,114(14):3738-3743.
[27] Postollec F, Norde W, de Vries J, et al. Interactive forces between co-aggregating and non-co-aggre-gating oral bacterial pairs[J]. J Dent Res, 2006,85(3):231-234.
[28] Hwang G, Marsh G, Gao L , et al. Binding force dynamics of Streptococcus mutans-glucosyltrans-ferase B to Candida albicans[J]. J Dent Res, 2015,94(9):1310-1317.
[29] Hwang G, Liu Y, Kim D , et al. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo[J]. PLoS Pathog, 2017,13(6):e1006407.
[30] Prystopiuk V, Feuillie C, Herman-Bausier P , et al. Mechanical forces guiding Staphylococcus aureus cellular invasion[J]. ACS Nano, 2018,12(4):3609-3622.
[31] Becke TD, Ness S, Gürster R , et al. Single molecule force spectroscopy reveals two-domain binding mode of Pilus-1 Tip protein RrgA of Streptococcus pneu-monia to fibronectin[J]. ACS Nano, 2018,12(1):549-558.
[32] Alsteens D, Trabelsi H, Soumillion P , et al. Multipara- metric atomic force microscopy imaging of single bacteriophages extruding from living bacteria[J]. Nat Commun, 2013,4:2926.
[33] Formosa-Dague C, Speziale P, Foster TJ , et al. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG[J]. Proc Natl Acad Sci USA, 2016,113(2):410-415.
[34] Dufrêne YF, Ando T, Garcia R , et al. Imaging modes of atomic force microscopy for application in mole-cular and cell biology[J]. Nat Nanotechnol, 2017,12(4):295-307.
[35] Liu BH, Yu LC . In-situ, time-lapse study of extracel-lular polymeric substance discharge in Streptococcus mutans biofilm[J]. Colloids Surf B Biointerfaces, 2017,150:98-105.
[36] Dupres V, Menozzi FD, Locht C , et al. Nanoscale mapping and functional analysis of individual ad-hesins on living bacteria[J]. Nat Methods, 2005,2(7):515-520.
[37] El-Kirat-Chatel S, Beaussart A, Boyd CD , et al. Single-cell and single-molecule analysis deciphers the loca-lization, adhesion, and mechanics of the biofilm ad-hesin LapA[J]. ACS Chem Biol, 2014,9(2):485-494.
[38] Beaussart A, Péchoux C, Trieu-Cuot P , et al. Mole-cular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae[J]. Nano-scale, 2014,6(24):14820-14827.
[1] 冯旭,张祎,李梦红,刘楠,王六一,胡敏. 无托槽隐形矫治对牙周健康影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 166-170.
[2] 刘梦齐,盖阔,蒋丽. 抗菌性口腔种植材料的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 516-521.
[3] 盖阔, 郝丽英, 蒋丽. 应用原子力显微镜对口腔变异链球菌黏附机制的研究[J]. 国际口腔医学杂志, 2017, 44(3): 320-324.
[4] 郑赛男,蒋丽,李伟. 口腔细菌黏附机制的研究进展[J]. 国际口腔医学杂志, 2016, 43(2): 223-227.
[5] 兰静 王传勇 薛晶 蒋丽 李伟. 含纳米羟磷灰石的过氧化氢漂白剂对釉质表面的影响[J]. 国际口腔医学杂志, 2013, 40(4): 432-435.
[6] 苏伟珠1 王浙君1 撒悦1综述 王贻宁1,2审校. 漂白剂对复合树脂的影响[J]. 国际口腔医学杂志, 2012, 39(4): 537-539.
[7] 余志芬综述 张向宇审校 . 细菌黏附的研究进展[J]. 国际口腔医学杂志, 2009, 36(4): 448-450.
[8] 靖军军综述 郝玉庆审校. 壳聚糖及其衍生物对致龋细菌的作用[J]. 国际口腔医学杂志, 2009, 36(3): 291-293.
[9] 邱瑜蕾,包崇云. 生物材料表面细菌生物膜形成与理化特征[J]. 国际口腔医学杂志, 2008, 35(S1): -.
[10] 何海波,唐休发. 肿瘤细胞生物力学的研究进展[J]. 国际口腔医学杂志, 2004, 31(04): 273-275.
[11] 邱文彦,Richard R.Mu. 原子力显微镜在细菌学研究中的应用[J]. 国际口腔医学杂志, 2002, 29(05): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[6] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 王金涛 刘美娟 孙宏晨 欧阳喈. 牙槽嵴牵张成骨[J]. 国际口腔医学杂志, 2004, 31(02): 146 -148 .
[8] 蔡霞,李成章. 前列腺素E_2受体EP亚型在牙周炎发病机制中的作用[J]. 国际口腔医学杂志, 2005, 32(06): 461 -462 .
[9] 陈晓 蒋文晖 王文梅. 念珠菌性白斑的研究概况[J]. 国际口腔医学杂志, 2004, 31(02): 138 -140 .
[10] 轩东英,张建波 金岩. 胚胎发育期TGF-β超家族成员与腭裂发生的关系[J]. 国际口腔医学杂志, 2004, 31(02): 132 -134 .