国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (1): 37-42.doi: 10.7518/gjkq.2019.01.007

• 综述 • 上一篇    下一篇

仿生多肽促进牙体硬组织再矿化的研究进展

陶思颖,梁坤能,李继遥()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院牙体牙髓病科 成都 610041
  • 收稿日期:2018-05-10 修回日期:2018-10-03 出版日期:2019-01-01 发布日期:2019-01-11
  • 通讯作者: 李继遥 E-mail:jiyaoliscu@163.com
  • 作者简介:陶思颖,博士,Email:taosiying2021@qq.com
  • 基金资助:
    国家自然科学基金(81670977);四川省科技厅重点项目(2017SZ0030)

Research advances in biomimetic peptides promoting tooth remineralization

Siying Tao,Kunneng Liang,Jiyao Li()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-05-10 Revised:2018-10-03 Online:2019-01-01 Published:2019-01-11
  • Contact: Jiyao Li E-mail:jiyaoliscu@163.com
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81670977);Key Program of Science and Technology Department of Sichuan Province(2017SZ0030)

摘要:

牙体硬组织仿生再矿化是口腔医学和生物材料领域共同关注的热点问题,利用人体釉原蛋白、牙本质非胶原蛋白等有调控生物矿化功能的蛋白质氨基酸序列,设计仿生多肽材料,并诱导再矿化是促进牙体硬组织再生修复的新方法,本文就仿生多肽促进再矿化的理论基础及其代表性多肽的研究进展作一综述。

关键词: 仿生多肽, 牙体, 再矿化

Abstract:

Tooth biomimetic remineralization is a key issue in both oral medicine and biomaterial science. Tooth biomimetic remineralization induced by peptides designed from human proteins which can control biomineralization, such as ameloblastin and dentin non-collagenous proteins, is a new method of tooth regeneration. Basic theories of biomimetic peptides promoting remineralization and several representative peptides are reviewed in the paper.

Key words: biomimetic peptides, tooth, remineralization

中图分类号: 

  • R783.1
[1] George A, Veis A . Phosphorylated proteins and con-trol over apatite nucleation, crystal growth, and in-hibition[J]. Chem Rev, 2008,108(11):4670-4693.
doi: 10.1021/cr0782729 pmid: 2748976
[2] Niu LN, Zhang W, Pashley DH , et al. Biomimetic remineralization of dentin[J]. Dent Mater, 2014,30(1):77-96.
doi: 10.1016/j.dental.2013.07.013 pmid: 3867526
[3] Kim YK, Mai S, Mazzoni A , et al. Biomimetic remi-neralization as a progressive dehydration mechanism of collagen matrices—implications in the aging of resin-dentin bonds[J]. Acta Biomater, 2010,6(9):3729-3739.
doi: 10.1016/j.actbio.2010.03.021 pmid: 20304110
[4] Kim J, Arola DD, Gu L , et al. Functional biomimetic analogs help remineralize apatite-depleted deminera-lized resin-infiltrated dentin via a bottom-up approach[J]. Acta Biomater, 2010,6(7):2740-2750.
doi: 10.1016/j.actbio.2009.12.052 pmid: 20045745
[5] Gu LS, Huffman BP, Arola DD , et al. Changes in stiffness of resin-infiltrated demineralized dentin after remineralization by a bottom-up biomimetic approach[J]. Acta Biomater, 2010,6(4):1453-1461.
doi: 10.1016/j.actbio.2009.10.052 pmid: 2830350
[6] Tung MS, Eichmiller FC . Amorphous calcium phos-phates for tooth mineralization[J]. Compend Contin Educ Dent, 2004,25(9 Suppl 1):9-13.
pmid: 15645902
[7] Xu AW, Ma Y, Cölfen H . Biomimetic mineralization[J]. J Mater Chem, 2007,17(5):415-449.
doi: 10.1039/B611918M
[8] Tay FR, Pashley DH . Guided tissue remineralisation of partially demineralised human dentine[J]. Bioma-terials, 2008,29(8):1127-1137.
doi: 10.1016/j.biomaterials.2007.11.001 pmid: 18022228
[9] Li J, Yang J, Li J , et al. Bioinspired intrafibrillar mi-neralization of human dentine by PAMAM dendrimer[J]. Biomaterials, 2013,34(28):6738-6747.
doi: 10.1016/j.biomaterials.2013.05.046 pmid: 23787113
[10] Liang K, Yuan H, Li J , et al. Remineralization of demineralized dentin induced by amine-terminated PAMAM dendrimer[J]. Macromol Mater Eng, 2015,300(1):107-117.
doi: 10.1002/mame.201400207
[11] Zhang L, Weir MD, Chow LC , et al. Novel recharge-able calcium phosphate dental nanocomposite[J]. Dent Mater, 2016,32(2):285-293.
doi: 10.1016/j.dental.2015.11.015 pmid: 5116151
[12] Liu Y, Kim YK, Dai L , et al. Hierarchical and non-hierarchical mineralisation of collagen[J]. Biomate-rials, 2011,32(5):1291-1300.
doi: 10.1016/j.biomaterials.2010.10.018 pmid: 3003335
[13] Zeichner-David M . Is there more to enamel matrix proteins than biomineralization[J]. Matrix Biol, 2001,20(5/6):307-316.
doi: 10.1016/S0945-053X(01)00155-X pmid: 11566264
[14] Robinson C, Brookes SJ, Shore RC , et al. The deve-loping enamel matrix: nature and function[J]. Eur J Oral Sci, 1998,106(Suppl 1):282-291.
doi: 10.1111/j.1600-0722.1998.tb02188.x pmid: 9541238
[15] Brookes SJ, Robinson C, Kirkham J , et al. Bioche-mistry and molecular biology of amelogenin proteins of developing dental enamel[J]. Arch Oral Biol, 1995,40(1):1-14.
doi: 10.1016/0003-9969(94)00135-X pmid: 7748107
[16] Shafiei F, Hossein BG, Farajollahi MM , et al. Leu-cine-rich amelogenin peptide (LRAP) as a surface primer for biomimetic remineralization of superficial enamel defects: an in vitro study[J]. Scanning, 2015,37(3):179-185.
doi: 10.1002/sca.21196 pmid: 25676352
[17] Ruan Q, Zhang Y, Yang X , et al. An amelogenin-chitosan matrix promotes assembly of an enamel-like layer with a dense interface[J]. Acta Biomater, 2013,9(7):7289-7297.
doi: 10.1016/j.actbio.2013.04.004 pmid: 3669649
[18] Fan Y, Sun Z, Moradian-Oldak J . Controlled remine-ralization of enamel in the presence of amelogenin and fluoride[J]. Biomaterials, 2009,30(4):478-483.
doi: 10.1016/j.biomaterials.2008.10.019 pmid: 2642519
[19] Du C, Falini G, Fermani S , et al. Supramolecular assembly of amelogenin nanospheres into birefringent microribbons[J]. Science, 2005,307(5714):1450-1454.
doi: 10.1126/science.1105675 pmid: 15746422
[20] Moradian-Oldak J . Amelogenins: assembly, proces-sing and control of crystal morphology[J]. Matrix Biol, 2001,20(5/6):293-305.
doi: 10.1016/S0945-053X(01)00154-8 pmid: 11566263
[21] Le Norcy E, Kwak SY, Wiedemann-Bidlack FB , et al. Leucine-rich amelogenin peptides regulate mine-ralization in vitro[J]. J Dent Res, 2011,90(9):1091-1097.
doi: 10.1177/0022034511411301 pmid: 3169881
[22] Bagheri GH, Sadr A, Espigares J , et al. Study on the influence of leucine-rich amelogenin peptide (LRAP) on the remineralization of enamel defects via micro-focus x-ray computed tomography and nanoindenta-tion[J]. Biomed Mater, 2015,10(3):035007.
doi: 10.1088/1748-6041/10/3/035007 pmid: 26041048
[23] Kirkham J, Firth A, Vernals D , et al. Self-assembling peptide scaffolds promote enamel remineralization[J]. J Dent Res, 2007,86(5):426-430.
doi: 10.1177/154405910708600507 pmid: 17452562
[24] Lv X, Yang Y, Han S , et al. Potential of an amelogenin based peptide in promoting reminerlization of initial enamel caries[J]. Arch Oral Biol, 2015,60(10):1482-1487.
doi: 10.1016/j.archoralbio.2015.07.010
[25] Han S, Fan Y, Zhou Z , et al. Promotion of enamel caries remineralization by an amelogenin-derived peptide in a rat model[J]. Arch Oral Biol, 2017,73:66-71.
doi: 10.1016/j.archoralbio.2016.09.009 pmid: 27694019
[26] Li QL, Ning TY, Cao Y , et al. A novel self-assembled oligopeptide amphiphile for biomimetic mineraliza-tion of enamel[J]. BMC Biotechnol, 2014,14:32.
doi: 10.1186/1472-6750-14-32 pmid: 4021083
[27] Hao J, Zou B, Narayanan K , et al. Differential expre-ssion patterns of the dentin matrix proteins during mineralized tissue formation[J]. Bone, 2004,34(6):921-932.
doi: 10.1016/j.bone.2004.01.020 pmid: 15193538
[28] Kuboki Y, Fujisawa R, Aoyama K , et al. Calcium-specific precipitation of dentin phosphoprotein: a new method of purification and the significance for the mechanism of calcification[J]. J Dent Res, 1979,58(9):1926-1932.
doi: 10.1177/00220345790580092001
[29] Stetler-Stevenson WG, Veis A . Bovine dentin phos-phophoryn: calcium ion binding properties of a high molecular weight preparation[J]. Calcif Tissue Int, 1987,40(2):97-102.
doi: 10.1007/BF02555712 pmid: 3105840
[30] George A, Bannon L, Sabsay B , et al. The carboxyl-terminal domain of phosphophoryn contains unique extended triplet amino acid repeat sequences forming ordered carboxyl-phosphate interaction ridges that may be essential in the biomineralization process[J]. J Biol Chem, 1996,271(51):32869-32873.
doi: 10.1074/jbc.271.51.32869 pmid: 8955126
[31] He G, Dahl T, Veis A , et al. Nucleation of apatite crystals in vitro by self-assembled dentin matrix pro-tein 1[J]. Nat Mater, 2003,2(8):552-558.
doi: 10.1038/nmat945 pmid: 12872163
[32] Sikes CS, Wheeler AP . Surface reactive peptides and polymers: discovery and commercialization[M]. Washington DC: American Chemical Society Publi-cations, 1991.
[33] Boanini E, Fini M, Gazzano M , et al. Hydroxyapatite nanocrystals modified with acidic amino acids[J]. Eur J Inorg Chem, 2006,2006(23):4821-4826.
doi: 10.1002/ejic.200600423
[34] Hsu CC, Chung HY, Yang JM , et al. Influence of 8DSS peptide on nano-mechanical behavior of human enamel[J]. J Dent Res, 2011,90(1):88-92.
doi: 10.1177/0022034510381904 pmid: 20974901
[35] Yang Y, Lv XP, Shi W , et al. 8DSS-promoted remine-ralization of initial enamel caries in vitro[J]. J Dent Res, 2014,93(5):520-524.
doi: 10.1177/0022034514522815 pmid: 24496294
[36] Liang K, Xiao S, Shi W , et al. 8DSS-promoted remi-neralization of demineralized dentin in vitro[J]. J Mater Chem B, 2015,3(33):6763-6772.
doi: 10.1039/C5TB00764J
[37] Chung HY, Li CC, Hsu CC . Characterization of the effects of 3DSS peptide on remineralized enamel in artificial saliva[J]. J Mech Behav Biomed Mater, 2012,6:74-79.
doi: 10.1016/j.jmbbm.2011.10.008 pmid: 22301175
[38] Chung HY, Li CC . Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide[J]. Mater Sci Eng C Mater Biol Appl, 2013,33(2):969-973.
doi: 10.1016/j.msec.2012.11.031 pmid: 25427512
[39] Sfeir C, Fang PA, Jayaraman T , et al. Synjournal of bone-like nanocomposites using multiphosphorylated peptides[J]. Acta Biomater, 2014,10(5):2241-2249.
doi: 10.1016/j.actbio.2014.01.007 pmid: 24434535
[40] Nijhuis AW, Nejadnik MR, Nudelman F , et al. Enzy-matic pH control for biomimetic deposition of cal-cium phosphate coatings[J]. Acta Biomater, 2014,10(2):931-939.
doi: 10.1016/j.actbio.2013.09.036 pmid: 24095783
[41] Tartaix PH, Doulaverakis M, George A , et al. In vitro effects of dentin matrix protein-1 on hydroxyapatite formation provide insights into in vivo functions[J]. J Biol Chem, 2004,279(18):18115-18120.
doi: 10.1074/jbc.M314114200 pmid: 14769788
[42] Padovano JD, Ravindran S, Snee PT , et al. DMP1-derived peptides promote remineralization of human dentin[J]. J Dent Res, 2015,94(4):608-614.
doi: 10.1177/0022034515572441 pmid: 25694469
[43] Wang Q, Wang XM, Tian LL , et al. In situ reminera-lizaiton of partially demineralized human dentine mediated by a biomimetic non-collagen peptide[J]. Soft Matter, 2011,7(20):9673-9680.
doi: 10.1039/c1sm05018d
[44] Cao Y, Liu W, Ning T , et al. A novel oligopeptide simulating dentine matrix protein 1 for biomimetic mineralization of dentine[J]. Clin Oral Investig, 2014,18(3):873-881.
doi: 10.1007/s00784-013-1035-y pmid: 23912147
[45] 刘巍, 曹颖, 沈军 , 等. 牙本质基质蛋白-1仿生多肽的设计与评价[J]. 华西口腔医学杂志, 2013,31(4):341-344.
doi: 10.7518/hxkq.2013.04.003
Liu W, Cao Y, Shen J , et al. Design and evaluation of a kind of biomimetic peptides of dentin matrix pro- tein-1[J]. West Chin J Stomatol, 2013,31(4):341-344.
doi: 10.7518/hxkq.2013.04.003
[46] Hunter GK, Hauschka PV, Poole AR , et al. Nucleation and inhibition of hydroxyapatite formation by mine-ralized tissue proteins[J]. Biochem J, 1996,317(Pt 1):59-64.
doi: 10.1042/bj3170059 pmid: 8694787
[47] Young MF, Kerr JM, Ibaraki K , et al. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone[J]. Clin Orthop Relat Res, 1992(281):275-294.
[48] Ducy P, Desbois C, Boyce B , et al. Increased bone formation in osteocalcin-deficient mice[J]. Nature, 1996,382(6590):448-452.
[49] Lee NK, Sowa H, Hinoi E , et al. Endocrine regulation of energy metabolism by the skeleton[J]. Cell, 2007,130(3):456-469.
doi: 10.1016/j.cell.2007.05.047 pmid: 17693256
[50] In Y, Minoura K, Tomoo K , et al. Structural function of C-terminal amidation of endomorphin. Conforma-tional comparison of mu-selective endomorphin-2 with its C-terminal free acid, studied by 1H-NMR spectroscopy, molecular calculation, and X-ray crys-tallography [J]. FEBS J, 2005,272(19):5079-5097.
doi: 10.1111/j.1742-4658.2005.04919.x
[51] Hosseini S, Naderi-Manesh H, Mountassif D , et al. C-terminal amidation of an osteocalcin-derived peptide promotes hydroxyapatite crystallization[J]. J Biol Chem, 2013,288(11):7885-7893.
doi: 10.1074/jbc.M112.422048 pmid: 3597826
[1] 刘彤曦,柯星,杨健. 磁共振成像及其在牙体牙髓专业中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 693-698.
[2] 韩雨亭,吴燕茹. 应用龈壁提升术修复牙体缺损的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 349-355.
[3] 罗惟丹, 李明云, 周学东, 程磊. 纳米羟磷灰石在牙体修复和牙髓治疗领域的应用[J]. 国际口腔医学杂志, 2018, 45(2): 192-198.
[4] 田斌, 李雨轩, 余娜. 超声器械在肩台预备中的应用现状和研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 97-99.
[5] 王压冲, 胡德渝, 董滢, 涂蕊, 李雪, 孔恒. 成都农村儿童患龋状况调查报告[J]. 国际口腔医学杂志, 2017, 44(1): 28-31.
[6] 陈慧, 程磊. 防龋粘接材料的研究进展[J]. 国际口腔医学杂志, 2017, 44(1): 92-97.
[7] 孟玉坤, 宗弋. 瓷贴面修复的研究现状及临床应用[J]. 国际口腔医学杂志, 2017, 44(1): 1-10.
[8] 高静,申静. 根尖显微手术预后的影响因素[J]. 国际口腔医学杂志, 2016, 43(6): 717-720.
[9] 张琛,王晶,侯本祥. 住院医师牙体牙髓病学专业规范化临床能力培养的探讨[J]. 国际口腔医学杂志, 2016, 43(3): 260-262.
[10] 武诗语 麦穗. 玻璃离子在牙本质再矿化中的作用[J]. 国际口腔医学杂志, 2015, 42(1): 114-118.
[11] 郗红 周惠 闫秀娟 张宇娜 胡玮玮 黄洋. 纳米技术在龋病治疗中应用的研究进展[J]. 国际口腔医学杂志, 2014, 41(5): 563-566.
[12] 许鹏程 徐欣 周学东. 钙磷再矿化及其系统[J]. 国际口腔医学杂志, 2014, 41(3): 347-350.
[13] 吕琳琳 李纾. 骨膜蛋白与牙周组织再生[J]. 国际口腔医学杂志, 2014, 41(2): 224-227.
[14] 欧明明 黄晓峰 韩培彦. 牙槽骨发生的研究进展[J]. 国际口腔医学杂志, 2014, 41(2): 232-235.
[15] 刘鑫1 谭理军2 李涛1 黄诗言1. 不同种类茶对牛牙的釉质脱矿影响的体外初步研究[J]. 国际口腔医学杂志, 2013, 40(6): 710-713.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .