国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (4): 455-458.doi: 10.7518/gjkq.2018.04.015

• 综述 • 上一篇    下一篇

纳米材料改良义齿基托力学性能及抗菌性能的研究进展

曾越1, 夏海斌2, 王敏2   

  1. 1.武汉大学口腔医学院 武汉 430079;
    2.武汉大学口腔医院种植科 武汉 430079
  • 收稿日期:2017-08-20 修回日期:2018-01-12 出版日期:2018-07-02 发布日期:2018-07-02
  • 通讯作者: 王敏,副主任医师,博士,Email:83wangmin@whu.edu.cn
  • 作者简介:曾越,学士,Email:2013302220066@whu.edu.cn

Research progress on the mechanical and antibacterial properties of nanomaterial-modified denture base

Zeng Yue1, Xia Haibin2, Wang Min2   

  1. 1. School of Stomatology, Wuhan University, Wuhan 430079, China;
    2. Dept. of Implantology, Hospital of Stomatology, Wuhan University, Wuhan 430079, China
  • Received:2017-08-20 Revised:2018-01-12 Online:2018-07-02 Published:2018-07-02

摘要: 目前,义齿基托仍存在着力学性能上的缺陷,容易发生折断;同时,由于细菌黏附聚集于基托会形成菌斑,也易导致黏膜炎或龋病等口腔疾病。因此,提高树脂基托的力学性能和抗菌性能具有重要的临床意义。本文对纳米材料改良义齿基托的力学性能及抗菌性能进行综述。

关键词: 义齿基托, 纳米材料, 力学性能, 抗菌性能

Abstract: The mechanical properties and antibacterial properties of the resin denture base should be improved given that the denture base is prone to fracture and bacterial adhesion may lead to mucositis and caries. In this paper, the mechanical properties and antibacterial properties of denture bases modified with nanomaterials were reviewed.

Key words: denture base, nanomaterial, mechanical property, antibacterial property

中图分类号: 

  • R783.1
[1] Kul E, Aladağ Lİ, Yesildal R.Evaluation of thermal conductivity and flexural strength properties of poly (methyl methacrylate) denture base material rein-forced with different fillers[J]. J Prosthet Dent, 2016, 116(5): 803-810.
[2] Zhang XY, Zhang XJ, Huang ZL, et al.Hybrid ef-fects of zirconia nanoparticles with aluminum borate whiskers on mechanical properties of denture base resin PMMA[J]. Dent Mater J, 2014, 33(1): 141-146.
[3] Gad MM, Rahoma A, Al-Thobity AM, et al.In-fluence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate den-ture bases[J]. Int J Nanomedicine, 2016, 11: 5633-5643.
[4] Yu W, Wang X, Tang Q, et al.Reinforcement of denture base PMMA with ZrO2 nanotubes[J]. J Mech Behav Biomed Mater, 2014, 32: 192-197.
[5] Gad M, ArRejaie AS, Abdel-Halim MS, et al. The reinforcement effect of nano-zirconia on the tran-sverse strength of repaired acrylic denture base[J]. Int J Dent, 2016, 2016: 7094056.
[6] Alhavaz A, Rezaei Dastjerdi M, Ghasemi A, et al.Effect of untreated zirconium oxide nanofiller on the flexural strength and surface hardness of autopo-lymerized interim fixed restoration resins[J]. J Esthet Restor Dent, 2017, 29(4): 264-269.
[7] Atai M, Pahlavan A, Moin N.Nano-porous thermally sintered nano silica as novel fillers for dental com-posites[J]. Dent Mater, 2012, 28(2): 133-145.
[8] Balos S, Pilic B, Markovic D, et al.Poly(methyl-methacrylate) nanocomposites with low silica addi-tion[J]. J Prosthet Dent, 2014, 111(4): 327-334.
[9] Wang R, Tao J, Yu B, et al.Characterization of multiwalled carbon nanotube-polymethyl methacry-late composite resins as denture base materials[J]. J Prosthet Dent, 2014, 111(4): 318-326.
[10] Harb SV, Pulcinelli SH, Santilli CV, et al.A com-parative study on graphene oxide and carbon nano-tube reinforcement of PMMA-siloxane-silica an-ticorrosive coatings[J]. ACS Appl Mater Interfaces, 2016, 8(25): 16339-16350.
[11] 刘东菲, 梁春永, 陈苗苗, 等. 碳纳米管增强义齿基托机械性能的实验研究[J]. 天津医药, 2008, 36(11): 853-855.Liu DF, Liang CY, Chen MM, et al.A pilot study on carbon nanotube-reinforced denture base[J]. Tianjin Med J, 2008, 36(11): 853-855.
[12] Monteiro DR, Gorup LF, Takamiya AS, et al.Silver distribution and release from an antimicrobial den-ture base resin containing silver colloidal nanopar-ticles[J]. J Prosthodont, 2012, 21(1): 7-15.
[13] Oei JD, Zhao WW, Chu L, et al.Antimicrobial acrylic materials with in situ generated silver nanoparticles[J]. J Biomed Mater Res Part B Appl Biomater, 2012, 100(2): 409-415.
[14] Wady AF, Machado AL, Zucolotto V, et al.Evalua-tion of Candida albicans adhesion and biofilm for-mation on a denture base acrylic resin containing silver nanoparticles[J]. J Appl Microbiol, 2012, 112(6): 1163-1172.
[15] Acosta-Torres LS, Mendieta I, Nuñez-Anita RE, et al.Cytocompatible antifungal acrylic resin con-taining silver nanoparticles for dentures[J]. Int J Nanomedicine, 2012, 7: 4777-4786.
[16] Li Z, Sun J, Lan J, et al.Effect of a denture base acrylic resin containing silver nanoparticles on Candida albicans adhesion and biofilm formation[J]. Gerodontology, 2016, 33(2): 209-216.
[17] 曹江南, 刘晓秋, 姚慧珍, 等. 纳米银涂层改性义齿基托的细胞毒性与抗菌性能研究[J]. 中华口腔医学杂志, 2014, 49(4): 229-233.Cao JN, Liu XQ, Yao HZ, et al.Study on cytoto-xicity and antibacterial properties of nanometer silver coating modified denture base[J]. Chin J Sto-matol, 2014, 49(4): 229-233.
[18] Suganya S, Ahila SC, Kumar BM, et al.Evaluation and comparison of anti-Candida effect of heat cure polymethylmethacrylate resin enforced with silver nanoparticles and conventional heat cure resins: an in vitro study[J]. Indian J Dent Res, 2014, 25(2): 204-207.
[19] Zane A, Zuo R, Villamena FA, et al.Biocompatibi-lity and antibacterial activity of nitrogen-doped ti-tanium dioxide nanoparticles for use in dental resin formulations[J]. Int J Nanomedicine, 2016, 11: 6459-6470.
[20] Totu EE, Nechifor AC, Nechifor G, et al.Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing—the fututre in dental care for elderly edentulous pa-tients[J]. J Dent, 2017, 59: 68-77.
[21] 牛丽娜, 陈吉华, 方明, 等. 不同形貌氧化锌对复合树脂抗变异链球菌活性的影响[J]. 华西口腔医学杂志, 2009, 27(2): 210-212.Niu LN, Chen JH, Fang M, et al.Effect of different morphologies of zinc oxide on the activity of com-posite resin against Streptococcus mutans[J]. West Chin J Stomatol, 2009, 27(2): 210-212.
[22] Tavassoli Hojati S, Alaghemand H, Hamze F, et al.Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles[J]. Dent Mater, 2013, 29(5): 495-505.
[23] Cierech M, Kolenda A, Grudniak AM, et al.Signi-ficance of polymethylmethacrylate (PMMA) modi-fication by zinc oxide nanoparticles for fungal bio-film formation[J]. Int J Pharm, 2016, 510(1): 323-335.
[24] 姜龙, 沈敏娟, 张熳, 等. 纳米银二氧化钛抗菌剂对口腔义齿基托树脂机械性能的影响[J]. 中国消毒学杂志, 2016, 33(4): 308-311.Jiang L, Shen MJ, Zhang M, et al.Effect of nano-silver titanium dioxide antimicrobial on mechanical properties of oral denture base resin[J]. Chin J Disin-fect, 2016, 33(4): 308-311.
[1] 王路明,曹潇,仵琳悦,李蕴聪,雷波,牛林. 掺锌生物活性玻璃纳米颗粒对复合树脂力学性能影响的实验研究[J]. 国际口腔医学杂志, 2022, 49(4): 404-411.
[2] 张曦丹,孙吉宇,付馨靓,甘雪琦. 介孔硅酸钙纳米材料在牙体牙髓及颅颌面修复领域的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 476-482.
[3] 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340.
[4] 吴幸晨 朱亚琴. 自调节根管锉的特性和临床应用评价[J]. 国际口腔医学杂志, 2013, 40(6): 764-768.
[5] 刘晶莹综述 刘晓明审校. 不同牙体预备对瓷贴面力学性能和临床修复效果的影响[J]. 国际口腔医学杂志, 2012, 39(3): 404-407.
[6] 庄沛林综述 高燕审校. 抗菌纳米药物在根管消毒中的应用研究[J]. 国际口腔医学杂志, 2010, 37(4): 454-456.
[7] 许哲武综述 李彦审校. 颌面赝复体硅橡胶改性的研究进展[J]. 国际口腔医学杂志, 2010, 37(01): 98-98~100.
[8] 李文慧,鲜苏琴. 银的抗菌性能及其在种植体表面的抗菌改性研究[J]. 国际口腔医学杂志, 2008, 35(S1): -.
[9] 郝晓星综述 朱松审校. 义齿基托材料清洁抗菌研究新进展[J]. 国际口腔医学杂志, 2008, 35(5): 582-582~584.
[10] 廖娟,徐薇,莫安春,. 纯钛种植体表面抗菌改性的研究进展[J]. 国际口腔医学杂志, 2007, 34(03): 213-215.
[11] 王志刚,张富强,. 纤维桩的力学性能和粘接[J]. 国际口腔医学杂志, 2007, 34(03): 223-225.
[12] 曹艳兰,朱松. 聚甲基丙烯酸甲酯义齿基托材料清洁抗菌研究进展[J]. 国际口腔医学杂志, 2005, 32(06): 477-479.
[13] 宋文植 刘晓秋 孙宏晨 欧阳喈. 口腔纳米材料研究进展[J]. 国际口腔医学杂志, 2003, 30(06): 470-471.
[14] 许艳慧 李志安 李四群. 纳米羟基磷灰石的研究进展[J]. 国际口腔医学杂志, 2003, 30(01): 36-38.
[15] 陈传俊,张志愿. 纳米技术及其在口腔医学领域的应用前景[J]. 国际口腔医学杂志, 2001, 28(05): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .