国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (3): 340-343.doi: 10.7518/gjkq.2017.03.018

• 综述 • 上一篇    下一篇

半胱氨酸组织蛋白酶对牙本质粘接耐久性的影响

廖文婷, 李彦   

  1. 中山大学光华口腔医学院•附属口腔医院修复科;
    广东省口腔医学重点实验室 广州 510055
  • 收稿日期:2016-12-01 修回日期:2017-02-12 出版日期:2017-05-01 发布日期:2017-05-01
  • 通讯作者: 李彦,主任医师,博士,Email:dliyan2004@126.com
  • 作者简介:廖文婷,硕士,Email:liaowent@foxmail.com
  • 基金资助:
    广东省省级科技计划项目(2013B051000030)

Influence of cysteine cathepsins on dentin bonding durability

Liao Wenting, Li Yan.   

  1. Guanghua School of Stoma-tology, Dept. of Prosthodontics, Hospital of Stomatology, Sun Yat-sen University;
    Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2016-12-01 Revised:2017-02-12 Online:2017-05-01 Published:2017-05-01
  • Supported by:
    This study was supported by Science and Technology Planning Project of Guangdong Province(2013B051000030).

摘要: 半胱氨酸组织蛋白酶是组织蛋白酶家族的主要成员。牙本质酸蚀脱矿后裸露的胶原纤维被内源性蛋白酶降解是影响牙本质粘接耐久性的主要因素之一。除基质金属蛋白酶外,半胱氨酸组织蛋白酶也在粘接过程中被激活并参与混合层中胶原的破坏。本文就半胱氨酸组织蛋白酶与基质金属蛋白酶的相互作用、在牙本质粘接中的作用以及半胱氨酸组织蛋白酶抑制剂对提高牙本质粘接耐久性的作用的研究进展作一综述。

关键词: 半胱氨酸组织蛋白酶, 牙本质粘接耐久性, 基质金属蛋白酶, 半胱氨酸组织蛋白酶抑制剂

Abstract: Cysteine cathepsins are the major members of cathepsins. Exposed collagen is produced by demineralization during the process of dentin bonding. The degradation of the exposed collagen by endogenous proteases is one of the main factors that affect dentin bond durability. In addition to matrix metalloproteinases(MMPs), which play an important role in the decrease of dentin bonding durability, cysteine cathepsins are activated during the bonding process and then participate in the destruction of collagen in the hybrid layer. This study clarifies the interaction between cysteine cathepsins and MMPs and the influence ofcysteine cathepsinson dentin bonding and reviews the research progress of the application of cysteine cathepsins inhibitor in improving dentin bonding durability.

Key words: cysteine cathepsin, dentin bonding durability, matrix metalloproteinase, cysteine cathepsin inhibitor

中图分类号: 

  • R781.05
[1] Pashley DH, Tay FR, Yiu C, et al. Collagen degrada-tion by host-derived enzymes during aging[J]. J Dent Res, 2004, 83(3):216-221.
[2] Mazzoni A, Pashley D, Nishitani Y, et al. Reactiva-tion of inactivated endogenous proteolytic activities in phosphoric acid-etched dentine by etch-and-rinse adhesives[J]. Biomaterials, 2006, 27(25):4470-4476.
[3] Nishitani Y, Yoshiyama M, Wadgaonkar B, et al. Activation of gelatinolytic/collagenolytic activity in dentin by self-etching adhesives[J]. Eur J Oral Sci, 2006, 114(2):160-166.
[4] Dickinson DP. Cysteine peptidases of mammals: their biological roles and potential effects in the oral cavity and other tissues in health and disease[J]. Crit Rev Oral Biol Med, 2002, 13(3):238-275.
[5] Obermajer N, Jevnikar Z, Doljak B, et al. Role of cysteine cathepsins in matrix degradation and cell signalling[J]. Connect Tissue Res, 2008, 49(3):193- 196.
[6] Rossi A, Deveraux Q, Turk B, et al. Comprehensive search for cysteine cathepsins in the human genome [J]. Biol Chem, 2004, 385(5):363-372.
[7] Vasiljeva O, Dolinar M, Pungercar JR, et al. Recom-binant human procathepsin S is capable of autoca-talytic processing at neutral pH in the presence of glycosaminoglycans[J]. FEBS Lett, 2005, 579(5): 1285-1290.
[8] Caglic D, Pungercar JR, Pejler G, et al. Glycosa-minoglycans facilitate procathepsin B activation through disruption of propeptide-mature enzyme interactions[J]. J Biol Chem, 2007, 282(45):33076- 33085.
[9] Dubin G. Proteinaceous cysteine protease inhibitors [J]. Cell Mol Life Sci, 2005, 62(6):653-669.
[10] Tjäderhane L, Nascimento FD, Breschi L, et al. Op-timizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cys-teine cathepsins[J]. Dent Mater, 2013, 29(1):116- 135.
[11] Chen MK, Su SC, Lin CW, et al. Cathepsin B SNPs elevate the pathological development of oral cancer and raise the susceptibility to carcinogen-mediated oral cancer[J]. Hum Genet, 2012, 131(12):1861- 1868.
[12] Mogi M, Otogoto J. Expression of cathepsin-K in gingival crevicular fluid of patients with periodon-titis[J]. Arch Oral Biol, 2007, 52(9):894-898.
[13] Garg G, Pradeep AR, Thorat MK. Effect of nonsur-gical periodontal therapy on crevicular fluid levels of cathepsin K in periodontitis[J]. Arch Oral Biol, 2009, 54(11):1046-1051.
[14] Alan R, Marakoğlu İ, Haliloğlu S. Peri-implant crevicular fluid levels of cathepsin-K, RANKL, and OPG around standard, short, and mini dental im-plants after prosthodontic loading[J]. J Periodontal Implant Sci, 2015, 45(5):169-177.
[15] Nascimento FD, Minciotti CL, Geraldeli S, et al. Cysteine cathepsins in human carious dentin[J]. J Dent Res, 2011, 90(4): 506-511.
[16] Palosaari H, Pennington CJ, Larmas M, et al. Expre-ssion profile of matrix metalloproteinases(MMPs) and tissue inhibitors of MMPs in mature human odontoblasts and pulp tissue[J]. Eur J Oral Sci, 2003, 111(2):117-127.
[17] De Munck J, Van den Steen PE, Mine A, et al. Inhi-bition of enzymatic degradation of adhesive-dentin interfaces[J]. J Dent Res, 2009, 88(12):1101-1106.
[18] Cox SW, Eley BM, Kiili M, et al. Collagen degrada-tion by interleukin-1beta-stimulated gingival fibro-blasts is accompanied by release and activation of multiple matrix metalloproteinases and cysteine proteinases[J]. Oral Dis, 2006, 12(1):34-40.
[19] Hadler-Olsen E, Fadnes B, Sylte I, et al. Regulation of matrix metalloproteinase activity in health and disease[J]. FEBS J, 2011, 278(1):28-45.
[20] Boukpessi T, Menashi S, Camoin L, et al. The effect of stromelysin-1(MMP-3) on non-collagenous ex-tracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins[J]. Biomaterials, 2008, 29(33):4367-4373.
[21] Garnero P, Ferreras M, Karsdal MA, et al. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation[J]. J Bone Miner Res, 2003, 18(5):859-867.
[22] Lehmann N, Debret R, Roméas A, et al. Self-etching increases matrix metalloproteinase expression in the dentin-pulp complex[J]. J Dent Res, 2009, 88(1):77- 82.
[23] Zhang W, Yang W, Wu S, et al. Effects of acid etch-ing and adhesive treatments on host-derived cysteine cathepsin activity in dentin[J]. J Adhes Dent, 2014, 16(5):415-420.
[24] Dung SZ, Gregory RL, Li Y, et al. Effect of lactic acid and proteolytic enzymes on the release of organic matrix components from human root dentin[J]. Caries Res, 1995, 29(6):483-489.
[25] Tersariol IL, Geraldeli S, Minciotti CL, et al. Cys-teine cathepsins in human dentin-pulp complex[J]. J Endod, 2010, 36(3):475-481.
[26] Vidal CM, Tjäderhane L, Scaffa PM, et al. Abun-dance of MMPs and cysteine cathepsins in caries-affected dentin[J]. J Dent Res, 2014, 93(3):269-274.
[27] Ricci HA, Sanabe ME, de Souza Costa CA, et al. Chlorhexidine increases the longevity of in vivo resin-dentin bonds[J]. Eur J Oral Sci, 2010, 118(4): 411-416.
[28] Scaffa PM, Vidal CM, Barros N, et al. Chlorhexidine inhibits the activity of dental cysteine cathepsins[J]. J Dent Res, 2012, 91(4):420-425.
[29] Tezvergil-Mutluay A, Agee KA, Mazzoni A, et al. Can quaternary ammonium methacrylates inhibit matrix MMPs and cathepsins[J]. Dent Mater, 2015, 31(2): e25-e32.
[30] 杨伟湘, 张文浩, 吴淑仪, 等. 不同浓度组织蛋白酶抑制剂E-64对牙本质与树脂粘接耐久性的影响[J]. 中华口腔医学杂志, 2013, 48(6):368-371.
Yang WX, Zhang WH, Wu SY, et al. Effect of dif-ferent molarity cathepsins specific inhibitor E-64 on dentin-resin bonding durability[J]. Chin J Stomatol, 2013, 48(6):368-371.
[1] 李蓝江1 许冰莹1 杨春艳2 赵川3 田心2. 基质金属蛋白酶1、3和9基因多态性与云南汉族人群口腔鳞状细胞癌发病风险的相关性研究[J]. 国际口腔医学杂志, 2015, 42(6): 631-634.
[2] 李明,彭解英,吴颖芳,张睿. 槟榔碱诱导上皮细胞基质金属蛋白酶9表达上调的分子机制[J]. 国际口腔医学杂志, 2015, 42(2): 166-169.
[3] 袁林,陈勰,程峰,杨征毅,潘广嗣,王涵,孙晋,曹依娜. 不同种植方式的种植体-骨界面基质金属蛋白酶2的表达变化[J]. 国际口腔医学杂志, 2014, 41(6): 631-634.
[4] 李广悦 谢芸 岳源 白丛佳 郝亮 王敏. 血管紧张素Ⅱ对小鼠成骨细胞骨桥蛋白和基质金属蛋白酶-2表达的影响[J]. 国际口腔医学杂志, 2013, 40(3): 291-296.
[5] 刘盘龙1 周红艳2 王东苗3 梅予锋2. 氟牙症发病机制的研究进展[J]. 国际口腔医学杂志, 2013, 40(1): 94-97.
[6] 王恒综述 滕伟审校. 基质金属蛋白酶对牙本质粘接耐久性的影响[J]. 国际口腔医学杂志, 2012, 39(4): 498-500.
[7] 刘佳综述 凌均棨审校. 基质金属蛋白酶的活性调控与龋病[J]. 国际口腔医学杂志, 2011, 38(5): 574-577.
[8] 张忻综述 谷志远审校. 膜型-1-基质金属蛋白酶在骨代谢和口腔发育及疾病中的表达和作用[J]. 国际口腔医学杂志, 2011, 38(2): 225-228.
[9] 岑玉锋1 李雪1 韩光丽2. 循环张应力对牙周膜细胞基质金属蛋白酶-8 和13表达的影响[J]. 国际口腔医学杂志, 2011, 38(2): 165-170.
[10] 黄佳诚综述 林雪峰审校. 宿主源性基质金属蛋白酶与树脂粘接[J]. 国际口腔医学杂志, 2010, 37(01): 62-64.
[11] 杨恒, 潘伦弘综述 丁一审校. 基质金属蛋白酶-13 的研究进展[J]. 国际口腔医学杂志, 2009, 36(5): 561-563.
[12] 王娇翠综述 赵玮审校. 乳牙根生理性吸收的研究现状[J]. 国际口腔医学杂志, 2009, 36(3): 300-302.
[13] 黄志权1综述 黄洪章2审校. 细胞外基质金属蛋白酶诱导因子与恶性肿瘤[J]. 国际口腔医学杂志, 2009, 36(1): 108-108~110.
[14] 张思宇,吴红崑,. 基质金属蛋白酶在牙本质龋中的作用[J]. 国际口腔医学杂志, 2008, 35(S1): -.
[15] 张彦博,李彦. 纳米渗漏与粘接耐久性的研究[J]. 国际口腔医学杂志, 2008, 35(S1): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[8] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[9] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[10] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .