国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (1): 87-91.doi: 10.7518/gjkq.2017.01.018
崔跃, 姜欢, 胡敏
Cui Yue, Jiang Huan, Hu Min.
摘要: 牙根吸收是正畸治疗过程中一种常见的并发症,影响正畸牙牙根吸收的因素十分复杂。牙根吸收的过程与骨吸收过程相似,由与破骨细胞形态相似功能相仿的破牙骨质细胞发挥主要作用。破骨细胞蛋白酪氨酸磷酸酶(PTP-oc)主要在破骨细胞中表达,且对破骨细胞具有正调节作用。本文探讨PTP-oc的作用机制,旨在为防治牙根吸收提供一定的参考依据。
中图分类号:
[1] Jiang RP, McDonald JP, Fu MK, Root resorption before and after orthodontic treatment: a clinical study of contributory factors[J]. Eur J Orthod, 2010, 32(6):693-697. [2] Elhaddaoui R, Benyahia H, Azeroual MF, et al. Resorp-tion of maxillary incisors after orthodontic treat-ment—clinical study of risk factors[J]. Int Orthod, 2016, 14(1):48-64. [3] 余丽霞, 何姝姝, 陈嵩. 全景及根尖片对正畸相关牙根吸收诊断准确性的研究[J]. 华西口腔医学杂志, 2012, 30(2):169-172. Yu LX, He SS, Chen S. Diagnostic accuracy of orthopantomogram and periapical film in evaluating root resorption associated with orthodontic force[J]. West Chin J Stomatol, 2012, 30(2):169-172. [4] Amoui M, Baylink DJ, Tillman JB, et al. Expression of a structurally unique osteoclastic protein-tyrosine phosphatase is driven by an alternative intronic, cell type-specific promoter[J]. J Biol Chem, 2003, 278 (45):44273-44280. [5] Amoui M, Suhr SM, Baylink DJ, et al. An osteo-clastic protein-tyrosine phosphatase may play a role in differentiation and activity of human monocytic U-937 cell-derived, osteoclast-like cells[J]. Am J Physiol Cell Physiol, 2004, 287(4):C874-C884. [6] Sheng MH, Lau KH. Role of protein-tyrosine phos-phatases in regulation of osteoclastic activity[J]. Cell Mol Life Sci, 2009, 66(11/12):1946-1961. [7] 姜欢. 正畸牙移动相关牙根吸收研究进展[J]. 口腔医学研究, 2011, 27(2):168-169. iang H. Research progress on tooth root resorption associated with orthodontic tooth movement[J]. J Oral Sci Res, 2011, 27(2):168-169. [8] Aminoshariae A, Aminoshariae A, Valiathan M, et al. Association of genetic polymorphism and external apical root resorption: a systematic review [J]. Angle Orthod, 2016, 86(6):1042-1049. [9] 李长霞, 李春雷, 朱双林, 等. 错类型对正畸治疗中牙根吸收影响的临床研究[J]. 实用口腔医学杂志, 2003, 19(4):336-338. Li CX, Li CL, Zhu SL, et al. Relationship between different types of malocclusion and root resorption during orthodontic treatment[J]. J Pract Stomatol, 2003, 19(4):336-338. [10] Maués CP, do Nascimento RR, Vilella Ode V. Severe root resorption resulting from orthodontic treatment: prevalence and risk factors[J]. Dental Press J Orthod, 2015, 20(1):52-58. [11] Kaku M, Sumi H, Shikata H, et al. Effects of pul-pectomyon the amount of root resorption during or-thodontic tooth movement[J]. J Endod, 2014, 40(3): 372-378. [12] Lee YJ, Lee TY. External root resorption during orthodontic treatment in root-filled teeth and con-tralateral teeth with vital pulp: a clinical study of contributing factors[J]. Am J Orthod Dentofacial Orthop, 2016, 149(1):84-91. [13] 白雪芹, 蒋红, 郝艳红, 等. Damon3自锁托槽与普通金属托槽对牙齿垂直移动影响的实验研究[J]. 口腔医学研究, 2008, 24(2):177-179. Bai XQ, Jiang H, Hao YH, et al. Comparative study on the alveolar bone remodeling during tooth in-trusion with damon3 self-ligating brackets and con-ventional brackets in beagle dogs[J]. J Oral Sci Res, 2008, 24(2):177-179. [14] 刘筠, 郭宏铭. 自锁托槽与传统托槽导致正畸牙根吸收的锥形束CT比较[J]. 上海口腔医学, 2016, 25 (2):238-241. Liu Y, Guo HM. Comparison of root resorption be-tween self-ligating and conventional brackets using cone-beam CT[J]. Shanghai J Stomatol, 2016, 25(2): 238-241. [15] Nakano T, Hotokezaka H, Hashimoto M, et al. Effects of different types of tooth movement and force ma-gnitudes on the amount of tooth movement and root resorption in rats[J]. Angle Orthodontist, 2014, 84 (6):1079-1085. [16] Roscoe MG, Meira JB, Cattaneo PM. Association of orthodontic force system and root resorption: a sys-tematic review[J]. Am J Orthod Dentofacial Orthop, 2015, 147(5):610-626. [17] Cuoghi OA, Aiello CA, Consolaro A, et al. Resorp-tion of roots of different dimension induced by dif-ferent types of forces[J]. Braz Oral Res, 2014, 28(1): 1-7. [18] Samah A, Nora A, Nasir A, et al. The effect of ortho-dontic therapy on periodontal health: a review of the literature[J]. Int J Dent, 2014, 2014:585048. [19] Oshiro T, Shibasaki Y, Martin TJ, et al. Immunoloca-lization of vacuolar-type H + -ATPase, cathepsin K, matrix metalloproteinase-9, and receptor activator of NF-κB ligand in odontoclasts during physiological root resorption of human deciduous teeth[J]. Anat Rec, 2001, 264(3):305-311. [20] Diercke K, Kohl A, Lux CJ, et al. Compression of human primary cementoblasts leads to apoptosis: a possible cause of dental root resorption[J]. J Orofac Orthop, 2014, 75(6):430-445. [21] Sheng MH, Wergedal JE, Mohan S, et al. Osteoac-tivin is a novel osteoclastic protein and plays a key role in osteoclast differentiation and activity[J]. FEBS Lett, 2008, 582(10):1451-1458. [22] 卢嘉静, 葛振林. 正畸致牙根吸收的分子生物学研究进展[J]. 国际口腔医学杂志, 2008, 35(5):599- 601. Lu JJ, Ge ZL. Research process on the molecular mechanism of dental root resorption induced by or-thodontic treatment[J]. Int J Stomatol, 2008, 35(5): 599-601. [23] Tonks NK. PTP1B: from the sidelines to the front lines[J]. FEBS Lett, 2003, 546(1):140-148. [24] Hunter T, Karin M. The regulation of transcription by phosphorylation[J]. Cell, 1992, 70(3):375-387. [25] Hendriks WJ, Elson A, Harroch S, et al. Protein tyrosine phosphatases: functional inferences from mouse models and human diseases[J]. FEBS J, 2008, 275(5):816-830. [26] den Hertog J, Ostman A, Böhmer FD. Protein ty-rosine phosphatases: regulatory mechanisms[J]. FEBS J, 2008, 275(5):831-847. [27] Yang JH, Amoui M, Strong DD, et al. Characteriza-tion and comparison of the intronic promoter of murine osteoclastic protein-tyrosine phosphatase, PTP-oc, with the human PTP-oc promoter[J]. Arch Biochem Biophys, 2007, 465(1):72-81. [28] Wu LW, Baylink DJ, Lau KH. Molecular cloning and expression of a unique rabbit osteoclastic phos-photyrosyl phosphatase[J]. Biochem J, 1996, 316 (Pt 2):515-523. [29] Aguiar RC, Yakushijin Y, Kharbanda S, et al. PTPROt: an alternatively spliced and developmentally re-gulated B-lymphoid phosphatase that promotes G0/G1 arrest[J]. Blood, 1999, 94(7):2403-2413. [30] Soriano P, Montgomery C, Geske R, et al. Targeted disruption of the c-src proto-oncogene leads to osteo-petrosis in mice[J]. Cell, 1991(4):693-702. [31] McHugh KP, Hodivala-Dilke K, Zheng MH, et al. Mice lacking beta3 integrins are osteosclerotic be-cause of dysfunctional osteoclasts[J]. J Clin Invest, 2000, 105(4):433-440. [32] 覃立耿, 周兰岛, 庞广福, 等. RANK/RANKL/OPG系统与骨质疏松[J]. 右江民族医学院学报, 2014, 36(3):459-461. Qin LG, Zhou LD, Pang GF, et al. RANK/RANKL/OPG system and osteoporosis[J]. J Youjiang Med Univ Nat, 2014, 36(3):459-461. [33] Hu Y, Liu W, Liu Z, et al. Receptor activator of nu-clear factor-kappa ligand, OPG, and IGF-I expression during orthodontically inducedinflammatory root resorption in the recombinant human growth hor-mone-treated rats[J]. Angle Orthod, 2015, 85(4): 562-569. [34] Amoui M, Sheng MH, Chen ST, et al. A transmem-brane osteoclastic protein-tyrosine phosphatase re-gulates osteoclast activity in part by promoting os-teoclast survival through c-Src-dependent activation of NFkappaB and JNK2[J]. Arch Biochem Biophys, 2007, 463(1):47-59. [35] Suhr SM, Pamula S, Baylink DJ, et al. Antisense oligodeoxynucleotide evidence that a unique os-teoclastic protein-tyrosine phosphatase is essential for osteoclastic resorption[J]. J Bone Miner Res, 2001, 16(10):1795-1803. [36] Bastos JV, Côrtes MI, Silva JF, et al. A study of the interleukin-1 gene cluster polymorphisms and in-flammatory external root resorption in replanted permanent teeth[J]. Int Endod J, 2015, 48(9):878- 887. [37] Lau KH, Stiffel V, Amoui M. An osteoclastic pro-tein-tyrosine phosphatase regulates the β3-integrin, syk, and shp1 signaling through respective src-dependent phosphorylation in osteoclasts[J]. Am J Physiol Cell Physiol, 2012, 302(11):C1676-C1686. [38] Lau KH, Amoui M, Stiffel V, et al. An osteoclastic transmembrane protein-tyrosine phosphatase enhan-ces osteoclast activity in part by dephosphorylating Epha4 in osteoclasts[J]. J Cell Biochem, 2015, 116 (8):1785-1796. [39] Hou J, Xia Y, Jiang R, et al. PTPRO plays a dual role in hepatic ischemia reperfusion injury through feedback activation of NF-κB[J]. J Hepatol, 2014, 60 (2):306-312. [40] Haynie DT, Xue B. Superdomains in the protein structure hierarchy: the case of PTP-C2[J]. Protein Sci, 2015, 24(5):874-882. (本文采编 王晴) |
[1] | 赵玉洁,管晓燕,李小兰,陈琦君,王倩,刘建国. 巨噬细胞极化参与正畸牙移动的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 478-483. |
[2] | 李寒月,夏露露,华先明. 牙周加速成骨正畸临床应用效果的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 206-211. |
[3] | 陈雪,李纾. 牙颈部外吸收[J]. 国际口腔医学杂志, 2019, 46(5): 516-521. |
[4] | 高鑫,曾融生. 骨保护素在口腔领域的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 316-319. |
[5] | 吉宁, 赵行, 曾昕, 陈谦明. 核苷类抗疱疹病毒药物的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 351-357. |
[6] | 唐秋玲, 李格格, 潘佳慧, 侯玉帛, 孟阳, 于维先. 细胞焦亡与牙龈卟啉单胞菌的关系及其在牙周病发生发展中的作用机制[J]. 国际口腔医学杂志, 2017, 44(6): 660-663. |
[7] | 黄璟1 周毅1,2. 肿瘤坏死因子α及其抑制剂的研究进展[J]. 国际口腔医学杂志, 2015, 42(1): 63-68. |
[8] | 刘林1 王生瑜2综述 袁小平1审校. 甲状旁腺素及其相关蛋白对正畸牙根吸收后修复相关细胞的作用[J]. 国际口腔医学杂志, 2012, 39(3): 376-379. |
[9] | 江莉婷综述 高益鸣审校. 胰岛素样生长因子-Ⅰ及其与髁突软骨发育的调控[J]. 国际口腔医学杂志, 2012, 39(3): 360-364. |
[10] | 陆史俊1综述 王林2 王震东2审校. 前牙压低技术在深覆牙合患者矫治中的应用进展[J]. 国际口腔医学杂志, 2011, 38(6): 674-676. |
[11] | 王智, 靳淑梅综述 张君审校. 牙根吸收的原因与机制[J]. 国际口腔医学杂志, 2010, 37(01): 101-101~105. |
[12] | 王娇翠综述 赵玮审校. 乳牙根生理性吸收的研究现状[J]. 国际口腔医学杂志, 2009, 36(3): 300-302. |
[13] | 左志刚综述 胡敏审校. 正畸治疗导致牙根吸收的影响因素和诊断评估[J]. 国际口腔医学杂志, 2009, 36(1): 111-111~113. |
[14] | 杨晓娟,田卫东. 成脂分化转录调控因子及其作用机制的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): -. |
[15] | 卢嘉静综述 葛振林审校. 正畸致牙根吸收的分子生物学研究进展[J]. 国际口腔医学杂志, 2008, 35(5): 599-599~601. |
|