国际口腔医学杂志 ›› 2016, Vol. 43 ›› Issue (3): 348-351.doi: 10.7518/gjkq.2016.03.021

• 综述 • 上一篇    下一篇

变异链球菌groi>E操纵子及其表达与调控

王一舟,张雅琪,牛雪微,张志民   

  1. 吉林大学口腔医院牙体牙髓病科 长春 130021
  • 收稿日期:2015-06-27 修回日期:2015-12-09 出版日期:2016-05-01 发布日期:2016-05-01
  • 通讯作者: 张志民,教授,博士,Email:zhangzm1964@sina.com
  • 作者简介:王一舟,硕士,Email:451454855@qq.com
  • 基金资助:
    国家自然科学基金(81170945)

The groE operon of Streptococcus mutans with its expression and regulation

Wang Yizhou, Zhang Yaqi, Niu Xuewei, Zhang Zhimin   

  1. Dept. of Conservative Dentistry and Endodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China) This study was supported by the National Natural Science Foundation of China(81170945).
  • Received:2015-06-27 Revised:2015-12-09 Online:2016-05-01 Published:2016-05-01

摘要: 变异链球菌耐受口腔内多种环境的变化,主要依赖于多种热休克蛋白基因的表达。其中,groE操纵子表达的GroES-GroEL蛋白可辅助新合成的以及变性的蛋白质折叠、组装、转运和降解,从而影响细胞的代谢。变异链球菌groE操纵子位于1 834 692~1 832 649位点,包括σA型启动子、分子伴侣表达反向重复序列(CIRCE)、groES和groEL及终止子,在进化上高度保守,其表达受热、酸、乙醇和过氧化氢等多种应激环境的诱导,受CtsR和HrcA蛋白的双重负性调节。groE操纵子的调控有HrcA-CIRCE系统负调控假说和CtsR的负调控两种方式,但其具体调控机制尚未在变异链球菌中得到充分证实。从分子水平上研究变异链球菌groE操纵子的结构和调控机制,有助于进一步阐明细胞的生理过程,为了解细胞在应激和病变状态下的分子调节机制打下基础。

关键词: 变异链球菌, groE操纵子, 热休克蛋白基因, 调控, 变异链球菌, groE操纵子, 热休克蛋白基因, 调控

Abstract: Streptococcus mutans(S.mutans), as one of the primary cariogenic bacteria, can respond to several environmental stresses. This ability mainly depends on the translation and expression of variety of heat shock protein genes. groE operon, one of the best-studied heat shock genes, affects the metabolism of cells by translating the heat shock proteins, groES-groEL, which can mediate the folding, assembly, transport, and degradation of new or misfolding proteins. The groE operon locates in 1 834 692-1 832 649 sites, including a σA promoter, inverted repeat sequence(CIRCE), groES, groEL and a terminator. It is highly conserved, and can be induced to express by stress environment including heat, acid, ethanol and hydrogen peroxide. Both HrcA-CIRCE system and CtsR play a negative regulation role, without a clear mechanism. Studies, about the structure and regulation mechanism of S.mutans groE operon in a molecular level, help to further clarify the physiological process of cells, and lay the foundation for understanding the molecular mechanism of cells under stress and pathological conditions.

Key words: Streptococcus mutans, groE operon, heat shock protein gene, regulation, Streptococcus mutans, groE operon, heat shock protein gene, regulation

中图分类号: 

  • Q 786
[1] Smith EG, Spatafora GA. Gene regulation in S.mutans: complex control in a complex environment[J]. J Dent Res, 2012, 91(2):133-141.
[2] Lemos JA, Abranches J, Burne RA. Responses of cariogenic streptococci to environmental stresses[J]. Curr Issues Mol Biol, 2005, 7(1):95-107.
[3] Kim JN, Ahn SJ, Seaton K, et al. Transcriptional organization and physiological contributions of the relQ operon of Streptococcus mutans[J]. J Bacteriol, 2012, 194(8):1968-1978.
[4] Matsumi Y, Fujita K, Takashima Y, et al. Contribution of glucan-binding protein A to firm and stable biofilm formation by Streptococcus mutans[J]. Mol Oral Microbiol, 2015, 30(3):217-226.
[5] Li Y, Zheng Z, Ramsey A. et al. Analysis of peptides and proteins in their binding to GroEL[J]. J Pept Sci, 2010, 16(12):693-700.
[6] Kim SN, Bae YG, Rhee DK. Dual regulation of dnaK and groE operons by HrcA and Ca++ in Streptococcus pneumoniae[J]. Arch Pharm Res, 2008, 31(4):462-467.
[7] Lemos JA, Chen YY, Burne RA. Genetic and physiologic analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance in Streptococcus mutans[J]. J Bacteriol, 2001, 183(20):6074-6084.
[8] Hung WC, Tsai JC, Hsueh PR, et al. Species identification of mutans streptococci by groESL gene sequence[J]. J Med Microbiol, 2005, 54(Pt 9):857-862.
[9] Bao F, Gong L, Shao W. Cloning, sequencing and analysis of dnaK-dnaJ gene cluster of Bacillus megaterium[J]. J Basic Microbiol, 2008, 48(6):448-454.
[10] Jhamb K, Sahoo DK. Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase[J]. Bioresour Technol, 2012, 123:135-143.
[11] Matsui R, Cvitkovitch D. Acid tolerance mechanisms utilized by Streptococcus mutans[J]. Future Micro biol, 2010, 5(3):403-417.
[12] Len AC, Harty DW, Jacques NA. Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance[J]. Microbiology, 2004, 150(Pt 5):1339-1351.
[13] Bolean M, Paulino Tde P, Thedei G Jr, et al. Photodynamic therapy with rose bengal induces GroEL expression in Streptococcus mutans[J]. Photomed Laser Surg, 2010, 28(Suppl 1):S79-S84.
[14] Lim B, Miyazaki R, Neher S, et al. Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E.coli[J]. PLoS Biol, 2013, 11(12):e1001735.
[15] Elsholz AK, Michalik S, Zühlke D, et al. CtsR, the Gram-positive master regulator of protein quality control, feels the heat[J]. EMBO J, 2010, 29(21):3621-3629.
[16] Tao L, Chattoraj P, Biswas I. CtsR regulation in mcsAB-deficient Gram-positive bacteria[J]. J Bacteriol, 2012, 194(6):1361-1368.
[17] Baird PN, Hall LM, Coates AR. Cloning and sequence analysis of the 10 kDa antigen gene of Mycobacterium tuberculosis[J]. J Gen Microbiol, 1989, 135(4):931-939.
[18] Wilson AC, Tan M. Stress response gene regulation in Chlamydia is dependent on HrcA-CIRCE interactions[J]. J Bacteriol, 2004, 186(11):3384-3391.
[19] Wilson AC, Wu CC, Yates JR 3rd, et al. Chlamydial GroEL autoregulates its own expression through direct interactions with the HrcA repressor protein [J]. J Bacteriol, 2005, 187(21):7535-7542.
[20] Chang LJ, Chen WH, Minion FC, et al. Mycoplasmas regulate the expression of heat-shock protein genes through CIRCE-HrcA interactions[J]. Biochem Biophys Res Commun, 2008, 367(1):213-218.
[21] Zuber U, Schumann W. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis[J]. J Bacteriol, 1994, 176(5):1359-1363.
[22] López-Larrea C. Sensing in nature. Preface[J]. Adv Exp Med Biol, 2012, 739:v-vvii.
[23] Inoue M, Mitarai N, Trusina A. Circuit architecture explains functional similarity of bacterial heat shock responses[J]. Phys Biol, 2012, 9(6):066003.
[24] Mogk A, Homuth G, Scholz C, et al. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis[J]. EMBO J, 1997, 16(15):4579-4590.
[25] Chen AL, Wilson AC, Tan M. A Chlamydia-specific C-terminal region of the stress response regulator HrcA modulates its repressor activity[J]. J Bacteriol, 2011, 193(23):6733-6741.
[26] Lemos JA, Luzardo Y, Burne RA. Physiologic effects of forced down-regulation of dnaK and groEL expression in Streptococcus mutans[J]. J Bacteriol, 2007, 189(5):1582-1588.
[27] Lemos JA, Burne RA. Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans[J]. J Bacteriol, 2002, 184(22):6357-6366.
[28] van Bokhorst-van de Veen H, Bongers RS, Wels M, et al. Transcriptome signatures of classⅠand Ⅲ stress response deregulation in Lactobacillus plantarum reveal pleiotropic adaptation[J]. Microb Cell Fact, 2013, 18(12):112.
[29] Chastanet A, Msadek T. ClpP of Streptococcus salivarius is a novel member of the dually regulated class of stress response genes in gram-positive bacteria[J]. J Bacteriol, 2003, 185(2):683-687.
[30] Chastanet A, Prudhomme M, Claverys JP, et al. Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival[J]. J Bacteriol, 2001, 183(24):7295-7307.
[31] Chastanet A, Fert J, Msadek T. Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria[J]. Mol Microbiol, 2003, 47(4):1061-1073.
(本文采编 王晴)
[1] 于乐蓉,李祥伟,艾虹. 牙髓干细胞干性维持的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 463-471.
[2] 龚涛,李雨庆,周学东. 变异链球菌糖转运及其调控机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 506-510.
[3] 赵曼竹,宋锦璘. 时钟基因在牙齿发育中表达分布与调控机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 380-385.
[4] 李姗姗,杨芳. 变异链球菌与白色念珠菌相互作用在龋病发生中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 392-396.
[5] 程旭,黄艺璇,李精韬,石冰. 牙颌面肌肉发育和再生特征的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 71-76.
[6] 杨佩佩,杨羽晨,张强. 尼古丁对牙槽骨破骨细胞的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 616-620.
[7] 王静,王艳,王川东,黄睿洁,田燕,胡玮,邹静. 甘草及其提取物在防治口腔感染相关疾病中的应用[J]. 国际口腔医学杂志, 2018, 45(5): 546-552.
[8] 陈浩玲, 林宇婧, 朱慧, 杨婷婷, 黄芳. 褪黑素对硬组织生长发育的调控作用[J]. 国际口腔医学杂志, 2018, 45(2): 185-191.
[9] 盖阔, 郝丽英, 蒋丽. 应用原子力显微镜对口腔变异链球菌黏附机制的研究[J]. 国际口腔医学杂志, 2017, 44(3): 320-324.
[10] 刘诗雨,何金枝,李明云. 白假丝酵母菌与龋病的相关性及其致龋机制[J]. 国际口腔医学杂志, 2017, 44(1): 103-107.
[11] 刘琨,侯本祥. 粪肠球菌和变异链球菌脂磷壁酸的生物学活性[J]. 国际口腔医学杂志, 2017, 44(1): 118-124.
[12] 张鹰 李明勇 霍丽 孟媛. 变异链球菌自诱导物2信号分子的体外合成与活性检测[J]. 国际口腔医学杂志, 2016, 43(5): 519-523.
[13] 陈冬茹 吴莉萍. 低氧诱导因子-1α和反义低氧诱导因子-1α的研究进展[J]. 国际口腔医学杂志, 2016, 43(5): 589-593.
[14] 吴家顺,汤亚玲. 涎腺腺样囊性癌中上皮间充质转化分子调控机制的研究进展[J]. 国际口腔医学杂志, 2016, 43(4): 421-427.
[15] 赵兴福,江山,黄晓晶,闫福华. 变异链球菌临床株表面相关蛋白表达差异的初步分析[J]. 国际口腔医学杂志, 2016, 43(3): 273-277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .