Int J Stomatol ›› 2025, Vol. 52 ›› Issue (5): 644-654.doi: 10.7518/gjkq.2025093

• Reviews • Previous Articles     Next Articles

Research progress on the regulatory mechanism and prevention and treatment of proanthocyanidins in oral diseases

Xing Wu1,2(),Yuping Liu1,Yifan Zhang1,Yucong Xia1,Zhaohe Li1,Xiaowei Yi1,Hong Xia1(),Wenwen Ding1   

  1. 1.Dept. of Medicine, Jingchu University of Technology, Jingmen 448001, China
    2.School of Stomatology, Zhejiang Chinese Medicine University, Hangzhou 310059, China
  • Received:2024-09-06 Revised:2024-10-31 Online:2025-09-01 Published:2025-08-27
  • Contact: Hong Xia E-mail:wuxing2062@163.com;xiahongvip@163.com
  • Supported by:
    Science Research Program of the Education Department of Hubei Province(D20224301);Open Project of Hubei Engineering Research Center for Special Flower Biological Breeding(2023YB003);Innovation and Entrepreneurship Program for College Students of Hubei Province(S202311336023)

Abstract:

Proanthocyanidins (PCs), a class of natural compounds with strong antioxidant properties and diverse biolo-gical activities, demonstrate significant potential in the prevention and treatment of oral diseases. They effectively promote the remineralization of dental hard tissues, inhibit the development of dental plaque biofilms, suppress the proliferation of oral cancer cells, and provide beneficial effects in the treatment of oral mucosal diseases. This review highlights that the core advantage of PCs in managing oral diseases stems from their dual-action mechanism: they not only target and inhibit pathogenic biofilms but also modulate the host’s oxidative stress and inflammatory responses. Notably, PCs interfere with microbial adhesion and biofilm formation via a non-bactericidal pathway, offering a novel strategy to potentially address microbial drug resistance. Although most current research is confined to the laboratory stage, the safety and multipotency of PCs position them as a promising natural adjuvant for oral disease therapy. This review systema-tically summarizes the applications of PCs in prevalent oral diseases and elucidates their biological mechanisms, aiming to establish a scientific basis for future clinical translation.

Key words: procyanidins, oral diseases, immune regulation, prevention and treatment of diseases

CLC Number: 

  • R78

TrendMD: 

Fig 1

Chemical structures of type A PC (left) and type B PC (right)"

Fig 2

The biological activity of PC on common oral diseases"

[1] Liu LM, Wang M, Guo ML, et al. Protection of proanthocyanidins against HSP serum-induced inflammation and oxidative stress on human umbilical vein endothelial cells[J]. Clin Cosmet Investig Dermatol, 2024, 17: 731-743.
[2] 伍行, 吴凯鹏, 邵斯琪, 等. 葡萄籽原花青素对小鼠镇咳、祛痰及免疫增强作用的影响[J]. 湘南学院学报(医学版), 2022, 24(4): 11-16.
Wu X, Wu KP, Shao SQ, et al. Effects of grape seed proanthocyanidins on cough suppression, expectorant and immune enhancement in mice[J]. J Xiangnan Univ (Med Sci), 2022, 24(4): 11-16.
[3] Lluís L, Muñoz M, Nogués MR, et al. Toxicology evaluation of a procyanidin-rich extract from grape skins and seeds[J]. Food Chem Toxicol, 2011, 49(6): 1450-1454.
[4] Alkhudhairy F, Bin-Shuwaish MS, Aljamhan AS. Effect of casein phosphopeptide-amorphous cal- cium phosphate, proanthocyanidin, carbon dioxide laser remineralization on the bond integrity of composite restoration bonded to caries-affected dentin[J]. Photobiomodul Photomed Laser Surg, 2024, 42(5): 350-355.
[5] Pavan S, Xie Q, Hara AT, et al. Biomimetic approach for root caries prevention using a proanthocyanidin-rich agent[J]. Caries Res, 2011, 45(5): 443-447.
[6] Kim D, Hwang G, Liu Y, et al. Cranberry flavonoids modulate cariogenic properties of mixed-species biofilm through exopolysaccharides-matrix disruption[J]. PLoS One, 2015, 10(12): e0145844.
[7] Lin YS, Chen SF, Liu CL, et al. The chemoadjuvant potential of grape seed procyanidins on p53-related cell death in oral cancer cells[J]. J Oral Pathol Med, 2012, 41(4): 322-331.
[8] Yang NG, Gao J, Cheng X, et al. Grape seed proanthocyanidins inhibit the proliferation, migration and invasion of tongue squamous cell carcinoma cells through suppressing the protein kinaseB/nuclear factor‑κB signaling pathway[J]. Int J Mol Med, 2017, 40(6): 1881-1888.
[9] Epasinghe DJ, Yiu C, Burrow MF. Synergistic effect of proanthocyanidin and CPP-ACFP on reminera-lization of artificial root caries[J]. Aust Dent J, 2015, 60(4): 463-470.
[10] Enrich-Essvein T, Rodríguez-Navarro AB, Álvarez-Lloret P, et al. Proanthocyanidin-functionalized hydroxyapatite nanoparticles as dentin biomodifier[J]. Dent Mater, 2021, 37(9): 1437-1445.
[11] Alejo-Armijo A, Salido S, Altarejos JN. Synthesis of A-type proanthocyanidins and their analogues: a comprehensive review[J]. J Agric Food Chem, 2020, 68(31): 8104-8118.
[12] 田晶. 高粱B型原花青素低聚体对口腔致龋菌S .sobrinus6715体外粘附的抑制效果及机理的研究[D]. 武汉: 华中农业大学, 2016.
Tian J. Inhibitory effect and mechanism of sorghum type B proanthocyanidins oligomer on the adhesion of oral cariogenic bacteria S .sobrinus 6715 in vitro[D]. Wuhan: Huazhong Agricultural University, 2016.
[13] Liang LS, Liu YJ, Wu LY, et al. Advances in extraction protocols, degradation methods, and bioactivities of proanthocyanidins[J]. Molecules, 2024, 29(10): 2179.
[14] Huang P. Proanthocyanidins may be potential therapeutic agents for the treatment of carotid atherosclerosis: a review[J]. J Int Med Res, 2023, 51(4): 3000605231167314.
[15] Chatelain K, Phippen S, McCabe J, et al. Cranberry and grape seed extracts inhibit the proliferative phenotype of oral squamous cell carcinomas[J]. Evid Ba-sed Complement Alternat Med, 2011, 2011: 467691.
[16] 刘菲菲, 席照亮, 刘秋月. 原花青素提高人舌癌细胞系放射敏感性及机制研究[J].安徽医药, 2022, 26(3): 443-447.
Liu FF, Xi ZL, Liu QY. Effect and mechanism of grape seed proanthocyanidin on improving radiosensitivity of tongue cancer cells[J]. Anhui Med Pharmaceut J, 2022, 26(3): 443-447.
[17] Firoozmand LM, Alania Y, Bedran-Russo AK. Development and assessment of bioactive coatings for the prevention of recurrent caries around resin composite restorations[J]. Oper Dent, 2022, 47(3): E152-E161.
[18] Boteon AP, Kato MT, Buzalaf MAR, et al. Effect of Proanthocyanidin-enriched extracts on the inhibition of wear and degradation of dentin deminerali-zed organic matrix[J]. Arch Oral Biol, 2017, 84: 118-124.
[19] Hemmati AA, Foroozan M, Houshmand G, et al. The topical effect of grape seed extract 2% cream on surgery wound healing[J]. Glob J Health Sci, 2014, 7(3): 52-58.
[20] Souissi M, Ben Lagha A, Chaieb K, et al. Effect of a berry polyphenolic fraction on biofilm formation, adherence properties and gene expression of Streptococcus mutans and its biocompatibility with oral epi-thelial cells[J]. Antibiotics (Basel), 2021, 10(1): 46.
[21] Koo H, Duarte S, Murata RM, et al. Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo [J]. Caries Res, 2010, 44(2): 116-126.
[22] Feng GP, Klein MI, Gregoire S, et al. The specific degree-of-polymerization of A-type proanthocyanidin oligomers impacts Streptococcus mutans glucan-mediated adhesion and transcriptome responses within biofilms[J]. Biofouling, 2013, 29(6): 629-640.
[23] Feghali K, Feldman M, La VD, et al. Cranberry proanthocyanidins: natural weapons against periodontal diseases[J]. J Agric Food Chem, 2012, 60(23): 5728-5735.
[24] Feldman M, Tanabe S, Howell A, et al. Cranberry proanthocyanidins inhibit the adherence properties of Candida albicans and cytokine secretion by oral epithelial cells[J]. BMC Complement Altern Med, 2012, 12: 6.
[25] Yu JN, Yan FF, Lu Q, et al. Interaction between sorghum procyanidin tetramers and the catalytic region of glucosyltransferases‑ Ⅰ from Streptococcus mutans UA159[J]. Food Res Int, 2018, 112: 152-159.
[26] 高洁, 赵玮钦, 程政. 石榴皮原花青素对变异链球菌生物膜形成及相关毒力基因表达的影响[J]. 山西医科大学学报, 2020, 51(8): 847-851.
Gao J, Zhao WQ, Cheng Z. Effects of proanthocya-nidin from pomegranate peels on biofilm formation and expression of virulence genes in Streptococcus mutans [J]. J Shanxi Med Univ, 2019, 51(8): 847-851.
[27] Ben Lagha A, LeBel G, Grenier D. Dual action of highbush blueberry proanthocyanidins on Aggregatibacter actinomycetemcomitans and the host inflammatory response[J]. BMC Complement Altern Med, 2018, 18(1): 10.
[28] Ben Lagha A, Howell A, Grenier D. Highbush blueberry proanthocyanidins alleviate Porphyromonas gingivalis-induced deleterious effects on oral mucosal cells[J]. Anaerobe, 2020, 65: 102266.
[29] Song SE, Choi BK, Kim SN, et al. Inhibitory effect of procyanidin oligomer from elm cortex on the matrix metalloproteinases and proteases of periodontopathogens[J]. J Periodontal Res, 2003, 38(3): 282-289.
[30] Arafa MG, Ghalwash D, El-Kersh DM, et al. Propolis-based niosomes as oromuco-adhesive films: a randomized clinical trial of a therapeutic drug deli-very platform for the treatment of oral recurrent aphthous ulcers[J]. Sci Rep, 2018, 8(1): 18056.
[31] Balalaie A, Rezvani MB, Basir MM, et al. A new approach for determining the minimum concentration of proanthocyanidin for preservation of collagen in H dentin[J]. Eur J Prosthodont Restor Dent, 2019, 27(4): 154-163.
[32] Dávila-Sánchez A, Gutierrez MF, Bermudez JP, et al. Influence of flavonoids on long-term bonding stability on caries-affected dentin[J]. Dent Mater, 2020, 36(9): 1151-1160.
[33] Jowkar Z, Firouzmandi M, Tabibi S. The effect of proanthocyanidin and casein phosphopeptide-amorphous calcium phosphate on the bond strength durability to caries-affected dentin[J]. Clin Exp Dent Res, 2021, 7(3): 338-343.
[34] Cai J, Burrow MF, Manton DJ, et al. Remineralising effects of fluoride varnishes containing calcium phosphate on artificial root caries lesions with adjunctive application of proanthocyanidin[J]. Dent Mater, 2021, 37(1): 143-157.
[35] Epasinghe DJ, Yiu CK, Burrow MF, et al. Effect of flavonoids on the mechanical properties of demine-ralised dentine[J]. J Dent, 2014, 42(9): 1178-1184.
[36] Dias PG, da Silva EM, Carvalho CM, et al. Characterization and antibacterial effect of an experimental adhesive containing different concentrations of proanthocyanidin[J]. J Adhes Dent, 2020, 22(2): 139-147.
[37] Nawrot-Hadzik I, Matkowski A, Hadzik J, et al. Proanthocyanidins and flavan-3-ols in the prevention and treatment of periodontitis-antibacterial effects[J]. Nutrients, 2021, 13(1): 165.
[38] Kwak SC, Cheon YH, Lee CH, et al. Grape seed proanthocyanidin extract prevents bone loss via regu-lation of osteoclast differentiation, apoptosis, and proliferation[J]. Nutrients, 2020, 12(10): 3164.
[39] Huang JH, Liu LL, Jin SS, et al. Proanthocyanidins promote osteogenic differentiation of human perio-dontal ligament fibroblasts in inflammatory environment via suppressing NF‑κB signal pathway[J]. Inflammation, 2020, 43(3): 892-902.
[40] Sardaro N, Della Vella F, Incalza MA, et al. Oxidative stress and oral mucosal diseases: an overview[J]. In Vivo, 2019, 33(2): 289-296.
[41] 刘敬, 伍行, 邓蔚, 等. 线粒体功能障碍在老年性聋中的研究进展[J].中华耳科学杂志, 2024, 22(3): 489-492.
Liu J, Wu X, Deng W, et al. Progress of research on mitochondrial dysfunction in presbycusis[J]. Chin J Otolog, 2024, 22(3): 489-492.
[42] Banerjee S, Mukherjee S, Mitra S, et al. Comparative evaluation of mitochondrial antioxidants in oral potentially malignant disorders[J]. Kurume Med J, 2020, 66(1): 15-27.
[43] Estornut C, Rinaldi G, Carceller MC, et al. Syste-mic and local effect of oxidative stress on recurrent aphthous stomatitis: systematic review[J]. J Mol Med, 2024, 102(4): 453-463.
[44] Alarcón-Sánchez MA, Escoto-Vasquez LS, Hebo-yan A. Salivary 8-hydroxy-2’-deoxyguanosine levels in patients with oral cancer: a systematic review and meta-analysis[J]. BMC Cancer, 2024, 24(1): 960.
[45] Barros CCDS, Freitas RA, Miguel MCDC, et al. DNA damage through oxidative stress is an important event in oral leukoplakia[J]. Arch Oral Biol, 2022, 135: 105359.
[46] Ye P, Liu H, Qin Y, et al. SS-31 mitigates oxidative stress and restores mitochondrial function in cigarette smoke-damaged oral epithelial cells via PINK1-mediated mitophagy[J]. Chem Biol Interact, 2024, 400: 111166.
[47] Lohana P, Suryaprawira A, Woods EL, et al. Role of enzymic antioxidants in mediating oxidative stress and contrasting wound healing capabilities in oral mucosal/skin fibroblasts and tissues[J]. Antioxidants, 2023, 12(7): 1374.
[48] Mohseni GK, Azaryan F, Kamali M, et al. Dietary antioxidant index and the risk of recurrent aphthous stomatitis[J]. Int Dent J, 2025, 75(2): 849-854.
[49] Chen KM, Sun YW, Kawasawa YI, et al. Black raspberry inhibits oral tumors in mice treated with the tobacco smoke constituent dibenzo(def, p)chrysene via genetic and epigenetic alterations[J]. Cancer Prev Res, 2020, 13(4): 357-366.
[50] Chen KM, Sun YW, Sun DX, et al. Black raspberry extract enhances glutathione conjugation of the fjord-region diol epoxide derived from the tobacco carci-nogen dibenzo[def, p]chrysene in human oral cells[J]. Chem Res Toxicol, 2022, 35(11): 2152-2159.
[51] Veilleux MP, Grenier D. Determination of the effects of cinnamon bark fractions on Candida albicans and oral epithelial cells[J]. BMC Complement Altern Med, 2019, 19(1): 303.
[52] Pietrella D, Rachini A, Pandey N, et al. The Inflammatory response induced by aspartic proteases of Candida albicans is independent of proteolytic activity[J]. Infect Immun, 2010, 78(11): 4754-4762.
[53] Santonocito S, Polizzi A, de Pasquale R, et al. Ana-lysis of the efficacy of two treatment protocols for patients with symptomatic oral lichen planus: a randomized clinical trial[J]. Int J Environ Res Public Health, 2020, 18(1): 56.
[54] Polizzi A, Santonocito S, Giudice AL, et al. Analysis of the response to two pharmacological protocols in patients with oral lichen planus: a randomized clinical trial[J]. Oral Dis, 2023, 29(2): 755-763.
[55] Koyfman SA, Ismaila N, Crook D, et al. Management of the neck in squamous cell carcinoma of the oral cavity and oropharynx: ASCO clinical practice guideline[J]. J Clin Oncol, 2019, 37(20): 1753-1774.
[56] Kingsley K, Jensen D, Toponce R, et al. Inhibition of oral cancer growth in vitro is modulated through differential signaling pathways by over-the-counter proanthocyanidin supplements[J]. J Diet Suppl, 2010, 7(2): 130-144.
[57] Khijmatgar S, Yong J, Rübsamen N, et al. Salivary biomarkers for early detection of oral squamous cell carcinoma (OSCC) and head/neck squamous cell carcinoma (HNSCC): a systematic review and network meta-analysis[J]. Jpn Dent Sci Rev, 2024, 60: 32-39.
[58] Chen H, Wang W, Yu S, et al. Procyanidins and their therapeutic potential against oral diseases[J]. Molecules, 2022, 27(9): 2932.
[1] Boqun Wang,Hui Lu,Qing Mu,Wei Zhao. Immune regulation mediated by extracellular vesicles from dental-derived mesenchymal stem cells [J]. Int J Stomatol, 2025, 52(5): 655-661.
[2] Nanyang Zhao,Juanjuan Wu,Zhou Zhou,Xinyue Chen,Xutong Zhang,Yifei Xu,Taiming Dai. Oral health status of 12-year-old children in the areas and non-intervention areas of comprehensive intervention project for pediatric oral diseases in Guizhou Province [J]. Int J Stomatol, 2025, 52(4): 484-489.
[3] Chen Jing,Ge Ziyu,Yu Tingting,Zhang Yanzhen. Research progress on the correlation between Parkinson's disease and oral diseases [J]. Int J Stomatol, 2021, 48(2): 218-224.
[4] Hu Yao,Cheng Lei,Guo Qiang,Ren Biao. Research progress on cross-kingdom interactions between Candida albicans and common oral bacteria [J]. Int J Stomatol, 2019, 46(6): 663-669.
[5] Donglei Wu,Jing Liu. Research progress on the association between oxidative stress injury and certain oral diseases [J]. Inter J Stomatol, 2019, 46(1): 62-67.
[6] Cheng Xingqun, Deng Meng, Xu Xin, Zhou Xuedong.. Saliva and salivaomics in early diagnosis of diseases [J]. Inter J Stomatol, 2014, 41(2): 213-219.
[7] Li Yan, He Jinzhi, Xiao Liying, Zhou Xuedong.. Oral microbiome and diseases [J]. Inter J Stomatol, 2014, 41(1): 118-122.
[8] GONG Qi- mei, LING Jun- qi. Resear ch progr ess on r elationship between monocyte chemoattr actant protein- 1 [J]. Inter J Stomatol, 2008, 35(3): 277-277~279,288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!