Int J Stomatol ›› 2025, Vol. 52 ›› Issue (4): 552-558.doi: 10.7518/gjkq.2025074

• Reviews • Previous Articles    

Research progress on the effects of maternal oral microorganisms on neonatal oral and systemic health

Hanzhi Deng(),Lei Zhao()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-05-09 Revised:2024-08-20 Online:2025-07-01 Published:2025-06-20
  • Contact: Lei Zhao E-mail:1327726675@qq.com;jollyzldoc@163.com
  • Supported by:
    Natural Science Foundation of Sichuan Province(2023NSFSC0553)

Abstract:

The influence of maternal oral health on pregnancy outcomes (such as preterm low birth weight, preeclampsia, and stillbirth) has been widely concerned by scholars. With the detection of oral microorganisms in the placenta, amnio-tic fluid, and other maternal structures, the influence and possible mechanism of oral microorganisms in pregnant women on the colonization of the fetus in the womb; the shaping of the fetal immune system; and the subsequent oral health of the newborn have become a new research hotspot. In this study, the effects of maternal oral microbiota on fetal health neonatal oral microbiota were reviewed. The maternal oral microbiota may influence oral health through the colonization and succession of oral microbiota during early life and may regulate fetal development, which has a profound impact on systemic health.

Key words: newborn, pregnant women, oral microorganism, microbial colonization in utero, early life microorganis

CLC Number: 

  • R780.2

TrendMD: 
1 Jang H, Patoine A, Wu TT, et al. Oral microflora and pregnancy: a systematic review and meta-analysis[J]. Sci Rep, 2021, 11(1): 16870.
2 Ye CC, Katagiri S, Miyasaka N, et al. The periodontopathic bacteria in placenta, saliva and subgingival plaque of threatened preterm labor and preterm low birth weight cases: a longitudinal study in Japanese pregnant women[J]. Clin Oral Investig, 2020, 24(12): 4261-4270.
3 Han YW, Ikegami A, Bissada NF, et al. Transmission of an uncultivated Bergeyella strain from the oral cavity to amniotic fluid in a case of preterm birth[J]. J Clin Microbiol, 2006, 44(4): 1475-1483.
4 Moreira LB, Silva CBD, Geraldo-Martins VR, et al. Presence of Streptococcus mutans and interleukin-6 and-10 in amniotic fluid[J]. J Matern Fetal Neonatal Med, 2022, 35(25): 9463-9469.
5 Kostadinov S, Pinar H. Amniotic fluid infection syndrome and neonatal mortality caused by Eikenella corrodens [J]. Pediatr Dev Pathol, 2005, 8(4): 489-492.
6 Han YW, Fardini Y, Chen C, et al. Term stillbirth caused by oral Fusobacterium nucleatum [J]. Obstet Gynecol, 2010, 115(2): 442-445.
7 Fardini Y, Chung P, Dumm R, et al. Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection[J]. Infect Immun, 2010, 78(4): 1789-1796.
8 Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome[J]. Sci Transl Med, 2014, 6(237): 237ra65.
9 Miranda-Rius J, Brunet-Llobet L, Blanc V, et al. Microbial profile of placentas from Tanzanian mothers with adverse pregnancy outcomes and periodontitis[J]. Oral Dis, 2023, 29(2): 772-785.
10 Blanc V, O’Valle F, Pozo E, et al. Oral bacteria in placental tissues: increased molecular detection in pregnant periodontitis patients[J]. Oral Dis, 2015, 21(7): 905-912.
11 Romero R, Gomez-Lopez N, Winters AD, et al. Evidence that intra-amniotic infections are often the result of an ascending invasion-a molecular microbiological study[J]. J Perinat Med, 2019, 47(9): 915-931.
12 Jia B, Tang LJ, Liu HB, et al. Alterations and potential roles of microbial population of pregnant mouse saliva and amniotic fluid[J]. Am J Reprod Immunol, 2023, 90(5): e13782.
13 Gonzales-Marin C, Spratt DA, Allaker RP. Maternal oral origin of Fusobacterium nucleatum in adverse pregnancy outcomes as determined using the 16S-23S rRNA gene intergenic transcribed spacer region[J]. J Med Microbiol, 2013, 62(Pt 1): 133-144.
14 Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, et al. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome[J]. Microbiome, 2017, 5(1): 48.
15 Tamburini S, Shen N, Wu HC, et al. The microbio-me in early life: implications for health outcomes[J]. Nat Med, 2016, 22(7): 713-722.
16 Theis KR, Romero R, Greenberg JM, et al. No consistent evidence for microbiota in murine placental and fetal tissues[J]. mSphere, 2020, 5(1): e00933-e00919.
17 Martinez KA 2nd, Romano-Keeler J, Zackular JP, et al. Bacterial DNA is present in the fetal intestine and overlaps with that in the placenta in mice[J]. PLoS One, 2018, 13(5): e0197439.
18 Younge N, McCann JR, Ballard J, et al. Fetal exposure to the maternal microbiota in humans and mice[J]. JCI Insight, 2019, 4(19): e127806.
19 Marije Kaan AMM, Kahharova D, Zaura E. Acquisition and establishment of the oral microbiota[J]. Periodontol 2000, 2021, 86(1): 123-141.
20 Mold JE, Michaëlsson J, Burt TD, et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero[J]. Science, 2008, 322(5907): 1562-1565.
21 Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns[J]. Proc Natl Acad Sci U S A, 2010, 107(26): 11971-11975.
22 Chu DM, Ma J, Prince AL, et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery[J]. Nat Med, 2017, 23(3): 314-326.
23 Drell T, Štšepetova J, Simm J, et al. The influence of different maternal microbial communities on the development of infant gut and oral microbiota[J]. Sci Rep, 2017, 7(1): 9940.
24 Russo M, Calevo MG, D’Alessandro G, et al. In-fluence of maternal oral microbiome on newborn oral microbiome in healthy pregnancies[J]. Ital J Pediatr, 2023, 49(1): 140.
25 Gomez-Arango LF, Barrett HL, McIntyre HD, et al. Antibiotic treatment at delivery shapes the initial oral microbiome in neonates[J]. Sci Rep, 2017, 7: 43481.
26 Mason MR, Chambers S, Dabdoub SM, et al. Chara-cterizing oral microbial communities across dentition states and colonization niches[J]. Microbiome, 2018, 6(1): 67.
27 Li Y, Caufield PW, Dasanayake AP, et al. Mode of delivery and other maternal factors influence the acquisition of Streptococcus mutans in infants[J]. J Dent Res, 2005, 84(9): 806-811.
28 Boustedt K, Roswall J, Dahlén G, et al. Salivary microflora and mode of delivery: a prospective case control study[J]. BMC Oral Health, 2015, 15(1): 155.
29 Dashper SG, Mitchell HL, Lê Cao KA, et al. Temporal development of the oral microbiome and prediction of early childhood caries[J]. Sci Rep, 2019, 9(1): 19732.
30 Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section[J]. Gut, 2014, 63(4): 559-566.
31 屠叶, 徐欣, 周学东. 生命早期口腔菌群的定植及影响因素[J]. 四川大学学报(医学版), 2022, 53(2): 220-225.
Tu Y, Xu X, Zhou XD. Development and influen-cing factors of oral microbiota in early life[J]. J Sichuan Univ (Med Sci), 2022, 53(2): 220-225.
32 Robertson RC, Manges AR, Finlay BB, et al. The human microbiome and child growth-first 1 000 days and beyond[J]. Trends Microbiol, 2019, 27(2): 131-147.
33 殳畅, 蔡琴, 叶尔盼 · 艾力卡木, 等. 生命早期口腔微生物群落建立、发育特点及其影响因素研究进展[J]. 口腔疾病防治, 2021, 29(6): 411-416.
Shu C, Cai Q, Erpan A, et al. Research progress on factors affecting the establishment and development of oral microbiota in early life[J]. J Prev Treat Stomatol Dis, 2021, 29(6): 411-416.
34 潘锋. 把握生命早期1 000天机遇窗口期构筑健康未来[J]. 妇儿健康导刊, 2024, 3(4): 4-6.
Pan F. Seizing the window of opportunity in the first 1 000 days of life to build a healthy future[J]. J Women Child Health Guide, 2024, 3(4): 4-6.
35 Yoshida S, Hatasa M, Ohsugi Y, et al. Porphyromo-nas gingivalis administration induces gestational obesity, alters gene expression in the liver and brown adipose tissue in pregnant mice, and causes underweight in fetuses[J]. Front Cell Infect Micro-biol, 2022, 11: 745117.
36 Starzyńska A, Wychowański P, Nowak M, et al. Association between maternal periodontitis and deve-lopment of systematic diseases in offspring[J]. Int J Mol Sci, 2022, 23(5): 2473.
37 Shirakashi DJ, Leal RP, Colombo NH, et al. Maternal periodontal disease in rats decreases insulin sensitivity and insulin signaling in adult offspring[J]. J Periodontol, 2013, 84(3): 407-414.
38 郑黎薇, 邹静, 游泳, 等. 孕期口腔疾病管理[J]. 华西口腔医学杂志, 2017, 35(2): 113-118.
Zheng LW, Zou J, You Y, et al. Management of oral diseases during pregnancy[J]. West China J Stomatol, 2017, 35(2): 113-118.
39 叶畅畅, 吴亚菲. 口腔微生态失衡与妊娠期牙周病和不良妊娠结局的相关性研究进展[J]. 中华口腔医学杂志, 2022, 57(6): 635-641.
Ye CC, Wu YF. Oral microbiome dysbiosis triggers gestational periodontal disease and adverse pregnancy outcomes[J]. Chin J Stomatol, 2022, 57(6): 635-641.
40 Liang S, Ren H, Guo H, et al. Periodontal infection with Porphyromonas gingivalis induces preterm birth and lower birth weight in rats[J]. Mol Oral Microbiol, 2018, 33(4): 312-321.
41 Ye CC, You M, Huang P, et al. Clinical study sho-wing a lower abundance of Neisseria in the oral microbiome aligns with low birth weight pregnancy outcomes[J]. Clin Oral Investig, 2022, 26(3): 2465-2478.
42 Zhang Y, Wu YP, Feng V, et al. Microbiota of preterm infant develops over time along with the first teeth eruption[J]. Front Microbiol, 2022, 13: 1049021.
43 Fleiss N, Tarun S, Polin RA. Infection prevention for extremely low birth weight infants in the NICU[J]. Semin Fetal Neonatal Med, 2022, 27(3): 101345.
44 Nilsson PM, Viigimaa M, Giwercman A, et al. Hypertension and reproduction[J]. Curr Hypertens Rep, 2020, 22(4): 29.
45 Kim CS, Park JS, Park J, et al. The relation between birth weight and insulin resistance in Korean adolescents[J]. Yonsei Med J, 2006, 47(1): 85-92.
46 Bao JH, Huang XY, Wang L, et al. Clinical practice guidelines for oral health care during pregnancy: a systematic evaluation and summary recommendations for general dental practitioners[J]. Quintessence Int, 2022, 53(4): 362-373.
47 Davis EC, Monaco CL, Insel R, et al. Gut microbio-me in the first 1 000 days and risk for childhood food allergy[J]. Ann Allergy Asthma Immunol, 2024, 133(3): 252-261.
48 Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma[J]. Sci Transl Med, 2015, 7(307): 307ra152.
49 肖秋丽, 蔡徐山, 张丽峰, 等. 孕前女性口腔菌群与胎儿过度生长的关联[J]. 中华围产医学杂志, 2024, 27(6): 457-467.
Xiao QL, Cai XS, Zhang LF, et al. Association between preconception oral microbiome and fetal overgrowth[J]. Chin J Perinat Med, 2024, 27(6): 457-467.
50 Craig SJC, Blankenberg D, Parodi ACL, et al. Child weight gain trajectories linked to oral microbiota composition[J]. Sci Rep, 2018, 8(1): 14030.
51 Dzidic M, Abrahamsson TR, Artacho A, et al. Oral microbiota maturation during the first 7 years of life in relation to allergy development[J]. Allergy, 2018, 73(10): 2000-2011.
52 Merchant AT, Gupta RD, Akonde M, et al. Association of chlorhexidine use and scaling and root pla-ning with birth outcomes in pregnant individuals with periodontitis: a systematic review and meta-analysis[J]. JAMA Netw Open, 2022, 5(12): e2247632.
[1] Chen Yifei,Zhang Binjing,Feng Shuqi,Xu Rui,Yang Shuxian,Li Yuqing. Effects of flavonoids on oral microorganisms and its mechanism [J]. Int J Stomatol, 2023, 50(2): 210-216.
[2] Fan Yu,Cheng Lei. Smoking affects the oral microenvironment and its role in the progression of dental caries [J]. Int J Stomatol, 2021, 48(5): 609-613.
[3] Li Shijia,Chen Qiuyu,Zou Jing,Huang Ruijie. Effect of nicotine on the growth of oral bacteria in single or mixed species [J]. Int J Stomatol, 2021, 48(3): 305-311.
[4] Zhang Mingshuang,Ba Te,Wang Wenbiao. Research progress on oral microorganisms affect Alzheimer’s disease [J]. Int J Stomatol, 2020, 47(1): 102-108.
[5] Min Wu,Man Liu,Shaowu Chen. Specialist perceptions and practices situation in dental care during pregnancy [J]. Inter J Stomatol, 2019, 46(1): 84-88.
[6] Liu Dan, Ren Biao, Cheng Lei.. Research development of silver nanoparticle on prevention and treatment of oral infectious disease [J]. Inter J Stomatol, 2018, 45(4): 408-413.
[7] Guo Xing, Ma Yurong, Li Heshun, Guo Yongjie, Shi Bing. The influence of lip adhesions on newborns’ cleft lip and palate repair [J]. Inter J Stomatol, 2015, 42(5): 507-509.
[8] Jia Xiaoqin, Zhang Yingcong, Yang He.. Prevention and strategy of oral disease in pregnant women [J]. Inter J Stomatol, 2013, 40(2): 279-280.
[9] CHU Min, LIANG Jing - ping.. Cur r ent Molecular Technologies for Char acter izing Or al Microbial Ecology [J]. Inter J Stomatol, 2007, 34(02): 81-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .