Int J Stomatol ›› 2025, Vol. 52 ›› Issue (2): 195-204.doi: 10.7518/gjkq.2025008

• Original Articles • Previous Articles     Next Articles

Mechanism of transferrin-modified liposomal curcumin on proliferation inhibition of oral squamous cell carcinoma

Xueqin Wei(),Kai Ba   

  1. Dept. of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
  • Received:2024-03-09 Revised:2024-07-24 Online:2025-03-01 Published:2025-03-01
  • Contact: Xueqin Wei E-mail:dentistwendy@qq.com
  • Supported by:
    Soft Science Project and Joint Construction Project of Henan Medical Science and Technology Research Plan(LHGJ20220361);Henan Province Science and Technology Research Project(232102310491)

Abstract:

Objective This study aimed to investigate the effect of transferrin (Tf)-modified curcumin (Cur)-loaded liposomes (Lips) on the oral squamous cell carcinoma cell line HN4. Methods Cur-Lips and Tf-Cur-Lips were prepared, and their regulatory effects on the internal and external disposal of curcumin were investigated during Cur release in vitro and pharmacokinetics in vivo in rats. Then, HN4 cells were treated with Cur, Cur-Lips, and Tf-Cur-Lips at different concentrations successively, and cell counting kit-8 was used to detect the effects of different experimental groups on HN4 cell proliferation. Finally, the expression levels of apoptosis-related genes P53 and Fas and the molecular mechanism of transferrin modification on Cur-Lips inhibiting the proliferation and apoptosis of HN4 cells were investigated through real-time fluorescence quantitative polymerase chain reaction. Results Compared with Cur, Cur-Lips considerably prolonged metabolic time, and transferrin modification further improved the stability of Cur and prolonged the metabolic time of Cur-Lips. Compared with Cur and Cur-Lips, Tf-Cur-Lips markedly enhanced the inhibitory effect on the HN4 cell proliferation and up-regulated the expression of P53 and Fas. Conclusion Tf-Cur-Lips have a stronger inhibitory effect on oral squamous cell carcinoma cell HN4 than Cur and Cur-Lips.

Key words: curcumin, liposomes, transferrin, HN4 cells, cell apoptosis

CLC Number: 

  • R780.1

TrendMD: 

Tab 1

Primer sequences of target genes"

基因引物序列(5’-3’)
GAPDH上游:GACGGCCGCATCTTCTTGTGC
下游:TGCAAATGGCAGCCCTGGTGA
P53上游:CTTTGAGGTGCGTGTTT
下游:CAGTGCTCGCTTAGTGC
Fas上游:GTGATGAAGGGCATGGTTTAG
下游:GCATTTGGTGTTGCTGGTT

Tab 2

Particle size and surface potential of Cur-Lips and Tf-Cur-Lips"

组别粒径/nm分散系数表面电位/mV
Cur-Lips183.0±2.80.19±0.03-28.8±0.3
Tf-Cur-Lips194.0±2.1*0.20±0.05-29.3±0.5

Fig 1

Particle size and potential profile"

Fig 2

Scanning electron microscope photographs"

Fig 3

Cumulative release rate of Cur in vitro"

Fig 4

The inhibitory effect of Cur, Cur-Lips and Tf-Cur-Lips on HN4 cells proliferation at four concentrations"

Fig 5

Effect of Cur, Cur-Lips and Tf-Cur-Lips on the expression of P53 and Fas gene of HN4"

Fig 6

Pharmacokinetics profiles of rats"

1 Almeida TC, da Silva GN, de Souza DV, et al. Resveratrol effects in oral cancer cells: a comprehensive review[J]. Med Oncol, 2021, 38(8): 97.
2 Panarese I, Aquino G, Ronchi A, et al. Oral and oropharyngeal squamous cell carcinoma: prognostic and predictive parameters in the etiopathogenetic route[J]. Expert Rev Anticancer Ther, 2019, 19(2): 105-119.
3 王太萍, 石兴莲, 李喆臻, 等. 口腔癌患者心理因素及干预现状分析[J]. 国际口腔医学杂志, 2023, 50(2): 203-209.
Wang TP, Shi XL, Li ZZ, et al. Analysis of psychological factors and intervention in patients with oral cancer[J]. Int J Stomatol, 2023, 50(2): 203-209.
4 Hasmat S, Ebrahimi A, Luk PP, et al. Positive survival trend in metastatic head and neck cutaneous squamous cell carcinoma over four-decades: multicenter study[J]. Head Neck, 2019, 41(11): 3826-3832.
5 Togni L, Mascitti M, Vignigni A, et al. Treatment-related dysgeusia in oral and oropharyngeal cancer: a comprehensive review[J]. Nutrients, 2021, 13(10): 3325.
6 聂思垚, 聂会军, 程兰, 等. 姜黄素的化学成分分析及药理作用研究进展[J]. 特产研究, 2023, 45(2): 169-174.
Nie SY, Nie HJ, Cheng L, et al. Reaearch progress on the chemical composition analysis and pharmacological effects of curcumin[J]. Spec Wild Econ A-nim Plant Res, 2023, 45(2): 169-174.
7 Zoi V, Galani V, Lianos GD, et al. The role of curcumin in cancer treatment[J]. Biomedicines, 2021, 9(9): 1086.
8 Maulina T, Hadikrishna I, Hardianto A, et al. The therapeutic activity of curcumin through its anti-cancer potential on oral squamous cell carcinoma: a study on Sprague Dawley rat[J]. SAGE Open Med, 2019, 7: 2050312119875982.
9 Siddappa G, Kulsum S, Ravindra DR, et al. Curcu-min and metformin-mediated chemoprevention of oral cancer is associated with inhibition of cancer stem cells[J]. Mol Carcinog, 2017, 56(11): 2446-2460.
10 Vallée A, Lecarpentier Y, Vallée JN. Curcumin: a therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 323.
11 Calibasi-Kocal G, Pakdemirli A, Bayrak S, et al. Curcumin effects on cell proliferation, angiogenesis and metastasis in colorectal cancer[J]. J BUON, 2019, 24(4): 1482-1487.
12 Kumar A, Harsha C, Parama D, et al. Current clinical developments in curcumin-based therapeutics for cancer and chronic diseases[J]. Phytother Res, 2021, 35(12): 6768-6801.
13 Hatamipour M, Ramezani M, Tabassi SAS, et al. Demethoxycurcumin: a naturally occurring curcu-min analogue with antitumor properties[J]. J Cell Physiol, 2018, 233(12): 9247-9260.
14 Morshedi K, Borran S, Ebrahimi MS, et al. Therapeutic effect of curcumin in gastrointestinal cancers: a comprehensive review[J]. Phytother Res, 2021, 35(9): 4834-4897.
15 Mirzaei H, Shakeri A, Rashidi B, et al. Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies[J]. Biomed Pharm, 2017, 85: 102-112.
16 Aqil F, Munagala R, Jeyabalan J, et al. Exosomes for the enhanced tissue bioavailability and efficacy of curcumin[J]. AAPS J, 2017, 19(6): 1691-1702.
17 Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what[J]. J Control Release, 2020, 318: 256-263.
18 He HS, Lu Y, Qi JP, et al. Adapting liposomes for oral drug delivery[J]. Acta Pharm Sin B, 2019, 9(1): 36-48.
19 Shao XR, Wei XQ, Zhang S, et al. Effects of micro-environmental pH of liposome on chemical stability of loaded drug[J]. Nanoscale Res Lett, 2017, 12(1): 504.
20 Jiang LM, Ayre WN, Melling GE, et al. Liposomes loaded with transforming growth factor β1 promote odontogenic differentiation of dental pulp stem cells[J]. J Dent, 2020, 103: 103501.
21 Feng T, Wei YM, Lee RJ, et al. Liposomal curcumin and its application in cancer[J]. Int J Nanomedicine, 2017, 12: 6027-6044.
22 La Barbera G, Capriotti AL, Caracciolo G, et al. A comprehensive analysis of liposomal biomolecular corona upon human plasma incubation: the evolution towards the lipid corona[J]. Talanta, 2020, 209: 120487.
23 Heger Z, Polanska H, Merlos Rodrigo MA, et al. Prostate tumor attenuation in the nu/nu murine mo-del due to anti-sarcosine antibodies in folate-targeted liposomes[J]. Sci Rep, 2016, 6: 33379.
24 Hewlings S, Kalman D. Curcumin: a review of its effects on human health[J]. Foods, 2017, 6(10): 92.
25 任玉国, 张凤梅, 王敏, 等. 联氨基姜黄素脂质体纳米颗粒对乳腺癌细胞增殖、凋亡、侵袭和迁移的影响[J]. 现代肿瘤医学, 2016, 24(1): 16-18.
Ren YG, Zhang FM, Wang M, et al. Curcumin affects-hydrazino liposomal nanoparticles on breast cancer cell proliferation, apoptosis, invasion and migration[J]. J Mod Oncol, 2016, 24(1): 16-18.
26 Zhao M, Zhao MN, Fu C, et al. Targeted therapy of intracranial glioma model mice with curcumin nanoliposomes[J]. Int J Nanomedicine, 2018, 13: 1601-1610.
27 Xu HZ, Gong Z, Zhou SY, et al. Liposomal curcu-min targeting endometrial cancer through the NF‑κB pathway[J]. Cell Physiol Biochem, 2018, 48(2): 569-582.
28 AlSawaftah NM, Awad NS, Paul V, et al. Transferrin-modified liposomes triggered with ultrasound to treat HeLa cells[J]. Sci Rep, 2021, 11(1): 11589.
29 Kawabata H. Transferrin and transferrin receptors update[J]. Free Radic Biol Med, 2019, 133: 46-54.
30 Shen Y, Li X, Dong DD, et al. Transferrin receptor 1 in cancer: a new sight for cancer therapy[J]. Am J Cancer Res, 2018, 8(6): 916-931.
31 Shirakihara T, Yamaguchi H, Kondo T, et al. Transferrin receptor 1 promotes the fibroblast growth factor receptor-mediated oncogenic potential of diffused-type gastric cancer[J]. Oncogene, 2022, 41(18): 2587-2596.
32 Candelaria PV, Leoh LS, Penichet ML, et al. Antibodies targeting the transferrin receptor 1 (TfR1) as direct anti-cancer agents[J]. Front Immunol, 2021, 12: 607692.
33 Wang KK, Yuan AH, Yu JQ, et al. One-step self-assembling method to prepare dual-functional transferrin nanoparticles for antitumor drug delivery[J]. J Pharm Sci, 2016, 105(3): 1269-1276.
34 Choudhury H, Pandey M, Chin PX, et al. Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends[J]. Drug Deliv Transl Res, 2018, 8(5): 1545-1563.
35 Wang YY, Yang YN, Yu YB, et al. Transferrin modified dioscin loaded PEGylated liposomes: characteri-zation and in vitro antitumor effect[J]. J Nanosci Nanotechnol, 2020, 20(3): 1321-1331.
36 Zhao XL, Yang YF, Su XR, et al. Transferrin-modified triptolide liposome targeting enhances anti-hepatocellular carcinoma effects[J]. Biomedicines, 2023, 11(10): 2869.
37 Deshpande P, Jhaveri A, Pattni B, et al. Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer[J]. Drug Deliv, 2018, 25(1): 517-532.
38 Wei XQ, Zhu JF, Wang XB, et al. Improving the stability of liposomal curcumin by adjusting the inner aqueous chamber pH of liposomes[J]. ACS Omega, 2020, 5(2): 1120-1126.
39 Kong L, Li XT, Ni YN, et al. Transferrin-modified osthole PEGylated liposomes travel the blood-brain barrier and mitigate Alzheimer’s disease-related pathology in APP/PS-1 mice[J]. Int J Nanomedicine, 2020, 15: 2841-2858.
40 Andrade S, Pereira MC, Loureiro JA. Caffeic acid loaded into engineered lipid nanoparticles for Alzheimer’s disease therapy[J]. Colloids Surf B Biointerfaces, 2023, 225: 113270.
41 Peng Q, Wei XQ, Yang Q, et al. Enhanced biostability of nanoparticle-based drug delivery systems by albumin corona[J]. Nanomedicine (Lond), 2015, 10(2): 205-214.
42 Sambrook J, Russell DW. Molecular cloning: a laboratory manual[M]. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001.
43 赵茜茜, 王英豪, 肖志勇, 等. 姜黄素-胡椒碱共载脂质体的制备及其体外抗肿瘤活性评价[J]. 中国医药工业杂志, 2023, 54(2): 230-236.
Zhao QQ, Wang YH, Xiao ZY, et al. Preparation and evaluation of in vitro antitumor activity of curcumin and piperine co-loaded liposomes[J]. Chin J Pharm, 2023, 54(2): 230-236.
44 尹芳, 王帅, 郝越, 等. 姜黄素的药理学作用及其机制的研究进展[J]. 河北联合大学学报(医学版), 2013, 15(6): 798-799.
Yin F, Wang S, Hao Y, et al. Research progress on pharmacological action and mechanism of curcumin[J]. J Hebei Unit Univers (Health Sci), 2013, 15(6): 798-799.
45 刘颖慧. 姜黄素脂质体的制备及其体内外抗菌活性的研究[D]. 沈阳: 沈阳农业大学, 2020.
Liu YH. Preparation of curcumin liposomes and stu-dy of its antibacterial activity in vivo and in vitro [D]. Shenyang: Shenyang Agricultural University, 2020.
46 Peng Q, Zhang ZR, Gong T, et al. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles[J]. Biomaterials, 2012, 33(5): 1583-1588.
47 Mary SJ, Veeravarmal V, Tharmasahayam IJ, et al. In vitro evaluation of cytotoxic effects of methanolic leaf extracts of Annona muricata on oral squamous cell carcinoma-15 cell lines and its effect on expression of Bcl 2-associated X protein, B-cell C/lymphoma 2 and p53 genes[J]. Contemp Clin Dent, 2023, 14(3): 227-231.
48 Li M, Sun D, Song N, et al. Mutant p53 in head and neck squamous cell carcinoma: molecular mechanism of gain-of-function and targeting therapy (review)[J]. Oncol Rep, 2023, 50(3): 162.
49 Malhotra L, Sharma S, Hariprasad G, et al. Mechanism of apoptosis activation by Curcumin rescued mutant p53Y220C in human pancreatic cancer[J]. Biochim Biophys Acta Mol Cell Res, 2022, 1869(12): 119343.
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Zhu Yuting, Liu Jiangfeng, Li Xiaoxing, Yang Huixiao, Huang Jiangyong, Yu Miao, Chen Bingxun, Li Yanli.. Lipopolysaccharides upregulated the expression of B-cell lymphoma-2 and its associated X protein in human dental pulp cells [J]. Inter J Stomatol, 2015, 42(4): 391-394.
[3] CAI Jie-ming, WANG Qian. New progress on application of liposomes in medicine [J]. Inter J Stomatol, 2009, 36(6): 698-700.
[4] LIU Chang-yong1, LI Zheng1, LI Xiao-yu2, LIU Yu-rong2, HU Huo-zhen1. Study of hepatitis B virus X protein inducing cell apoptosis [J]. Inter J Stomatol, 2008, 35(5): 491-491~493,605.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .