Int J Stomatol ›› 2023, Vol. 50 ›› Issue (6): 696-703.doi: 10.7518/gjkq.2023085

• Reviews • Previous Articles     Next Articles

Research progress on the application of computer-assisted navigation surgery in complex maxillofacial fractures

Lu Lei1(),Wang Xin1,Kang Zebiao2,Xie Fuqiang1,2()   

  1. 1.Dept. of Oral and Maxillofacial Surgery, School of Stomatology, Lanzhou University, Lanzhou 730000, China
    2.Dept. of Stomatology, Lanzhou University Second Hospital, Lanzhou 730000, China
  • Received:2023-03-06 Revised:2023-06-07 Online:2023-11-01 Published:2023-10-24
  • Contact: Fuqiang Xie;
  • Supported by:
    Natural Science Foundation Project of Gansu Provincial Department of Science and Tech-nology(20JR10RA737);Cuiying Science and Technology Innovation Program of Lanzhou University Second Hospital(CY2021-BJ-A18)


Maxillofacial fractures are one of the common diseases of the oral and maxillofacial area. Traditional surgical treatment relies on the rigid internal fixation after the reduction of the operator’s direct-looking technique. However, the treatment of complex maxillofacial fractures by traditional surgery still faces many shortcomings due to the complexity of the maxillofacial anatomy and the high requirements for facial aesthetics. Computer-assisted navigation surgery can provide accurate tracking and real-time visualization of anatomical targets and related instruments, which is more effective in solving the problems in the treatment of complex maxillofacial fractures, but there are still some challenges that can not be overcome and are worth studying. This work reviews the procedures of computer-assisted navigation surgery in different types of complex maxillofacial fractures, the methods to improve the accuracy of surgery, its advantages of achieving minimally invasive surgery, and the differences among the computer-assisted navigation surgery, the augmented reality surgery and the robot-assisted surgery, and propose the challenges that plague the application of computer-assisted navigation surgery, such as precise alignment, accurate conduction of intraoperative data, high costs, and difficulties in soft tissue localization. The future development of the application of computer-assisted navigation surgery in complex maxillofacial fractures is prospected.

Key words: computer-assisted navigation surgery, maxillofacial fractures, minimally invasive surgery

CLC Number: 

  • R 782.4

1 Hernandez D, Garimella R, Eltorai AEM, et al. Computer-assisted orthopaedic surgery[J]. Orthop Surg, 2017, 9(2): 152-158.
2 Ewurum CH, Guo YY, Pagnha S, et al. Surgical na-vigation in orthopedics: workflow and system review[J]. Adv Exp Med Biol, 2018, 1093: 47-63.
3 Yu HB, Shen SG, Wang XD, et al. The indication and application of computer-assisted navigation in oral andmaxillofacial surgery-Shanghai’s experien-ce based on 104 cases[J]. J Craniomaxillofac Surg, 2013, 41(8): 770-774.
4 Pivazyan G, Sandhu FA, Beaufort AR, et al. Basis for error in stereotactic and computer-assisted surgery in neurosurgical applications: literature review[J]. Neurosurg Rev, 2022, 46(1): 20.
5 Goguet Q, Lee SH, Longis J, et al. Intraoperative imaging and navigation with mobile cone-beam CT in maxillofacial surgery[J]. Oral Maxillofac Surg, 2019, 23(4): 487-491.
6 Keyser B, Afzal Z, Warburton G. Computer-assisted planning and intraoperative navigation in the ma-nagement of temporomandibular joint ankyloses[J]. Atlas Oral Maxillofac Surg Clin North Am, 2020, 28(2): 111-118.
7 Tang ZN, Hu LH, Soh HY, et al. Accuracy of mixed reality combined with surgical navigation assisted oral and maxillofacial tumor resection[J]. Front Oncol, 2021, 11: 715484.
8 Lan L, He Y, An JG, et al. Application of computer-aided navigation technology in the extraction of fo-reign body from the face[J]. J Craniofac Surg, 2020, 31(2): e166-e169.
9 Sozzi D, Filippi A, Canzi G, et al. Surgical navigation in mandibular reconstruction: accuracy evaluation of an innovative protocol[J]. J Clin Med, 2022, 11(7): 2060.
10 Liu K, Gao Y, Abdelrehem A, et al. Augmented rea-lity navigation method for recontouring surgery of craniofacial fibrous dysplasia[J]. Sci Rep, 2021, 11(1): 10043.
11 Chen YW, Hanak BW, Yang TC, et al. Computer-assisted surgery in medical and dental applications[J]. Expert Rev Med Devices, 2021, 18(7): 669-696.
12 Bohner L, Lustosa RM, Stamm T, et al. Influence of marginal incision and Le Fort Ⅰ osteotomy on perio-dontal tissues: a prospective longitudinal study[J]. Odontology, 2023, 111(1): 201-206.
13 Chen C, Sun NN, Jiang CM, et al. Accurate transfer of bimaxillary orthognathic surgical plans using computer-aided intraoperative navigation[J]. Korean J Orthod, 2021, 51(5): 321-328.
14 Bernstein JM, Daly MJ, Chan H, et al. Accuracy and reproducibility of virtual cutting guides and 3D-navigation for osteotomies of the mandible and ma-xilla[J]. PLoS One, 2017, 12(3): e0173111.
15 Gellrich NC, Eckstein FM, Lentge F, et al. Complex reconstructions in the facial and cranial regions[J]. Unfallchirurg, 2021, 124(10): 807-816.
16 Sukegawa S, Kanno T, Furuki Y. Application of computer-assisted navigation systems in oral and maxillofacial surgery[J]. Jpn Dent Sci Rev, 2018, 54(3): 139-149.
17 Chen S, Liu YH, Gao X, et al. Computer-assisted navigation for removal of the foreign body in the lower jaw with a mandible reference frame[J]. Medicine, 2020, 99(3): e18875.
18 Kang HG, Kang SH, Kim HK, et al. Target registration errors in navigation-assisted mandibular surgery according to the tracking methods and the type of markers: experiments using human dry mandibular bone[J]. Oral Radiol, 2023, 39(1): 180-190.
19 Bartier S, Mazzaschi O, Benichou L, et al. Compu-ter-assisted versus traditional technique in fibular free-flap mandibular reconstruction: a CT symmetry study[J]. Eur Ann Otorhinolaryngol Head Neck Dis, 2021, 138(1): 23-27.
20 Ter Braak TP, Brouwer de Koning SG, van Alphen MJA, et al. A surgical navigated cutting guide for mandibular osteotomies: accuracy and reproducibility of an image-guided mandibular osteotomy[J]. Int J Comput Assist Radiol Surg, 2020, 15(10): 1719-1725.
21 Ma QC, Kobayashi E, Suenaga H, et al. Autonomous surgical robot with camera-based markerless na-vigation for oral and maxillofacial surgery[J]. IEEE/ASME Trans Mechatron, 2020, 25(2): 1084-1094.
22 刘炯, 禹政钰, 杨光, 等. 计算机导航技术在复合性眼眶骨折整复术中的应用[J]. 国际眼科杂志, 2020, 20(1): 177-180.
Liu J, Yu ZY, Yang G, et al. Application of computer navigation technique in the treatment of complex orbital fractures[J]. Int Eye Sci, 2020, 20(1): 177-180.
23 Modabber A, Winnand P, Hölzle F, et al. Current developments in primary and secondary surgical treatment of midface and periorbital trauma[J]. HNO, 2022, 70(10): 756-764.
24 Zhuang A, Wang SY, Yuan QY, et al. Surgical repair of large orbital floor and medial wall fractures with destruction of the inferomedial strut: initial expe-rience with a combined endoscopy navigation technique[J]. J Plast Reconstr Aesthet Surg, 2023, 77: 104-110.
25 Brucoli M, Boffano P, Broccardo E, et al. The “European zygomatic fracture” research project: the epidemiological results from a multicenter European collaboration[J]. J Craniomaxillofac Surg, 2019, 47(4): 616-621.
26 罗彬, 周美云, 田绣云, 等. 数字化及3D打印联合内镜辅助技术治疗12例颧骨颧弓骨折效果评价[J]. 中国口腔颌面外科杂志, 2022, 20(2): 188-192.
Luo B, Zhou MY, Tian XY, et al. Application of di-gital and 3D printing combined with endoscopic assisted technology in the treatment of 12 patients with zygomatic and zygomatic arch fractures[J]. China J Oral Maxillofac Surg, 2022, 20(2): 188-192.
27 Demian N, Pearl C, Woernley TC 3rd, et al. Surgical navigation for oral and maxillofacial surgery[J]. Oral Maxillofac Surg Clin North Am, 2019, 31(4): 531-538.
28 Chen G, Zeng W, Yin HQ, et al. The preliminary application of augmented reality in unilateral orbitozygomatic maxillary complex fractures treatment[J]. J Craniofac Surg, 2020, 31(2): 542-548.
29 Jung S, Yoon S, Nam SH. Proposal for a modified classification of isolated zygomatic arch fractures[J]. Arch Craniofac Surg, 2022, 23(3): 111-118.
30 Azarmehr I, Stokbro K, Bell RB, et al. Surgical navi-gation: a systematic review of indications, treatments, and outcomes in oral and maxillofacial surgery[J]. J Oral Maxillofac Surg, 2017, 75(9): 1987-2005.
31 Chu YY, Yang JR, Pek CH, et al. Application of real-time surgical navigation for zygomatic fracture reduction and fixation[J]. J Plast Reconstr Aesthet Surg, 2022, 75(1): 424-432.
32 Chu YY, Yang JR, Lai BR, et al. Preliminary outcomes of the surgical navigation system combined with intraoperative three-dimensional C-arm computed tomography for zygomatico-orbital fracture reconstruction[J]. Sci Rep, 2022, 12(1): 7893.
33 Yang C, Lee MC, Pan CH, et al. Application of computer-assisted navigation system in acute zygomatic fractures[J]. Ann Plast Surg, 2019, 82(1S ): S53-S58.
34 Meng FH, Zhu ZH, Lei ZH, et al. Feasibility of the application of mixed reality in mandible reconstruction with fibula flap: a cadaveric specimen study[J]. J Stomatol Oral Maxillofac Surg, 2021, 122(4): e45-e49.
35 Ha J, Parekh P, Gamble D, et al. Opportunities and challenges of using augmented reality and heads-up display in orthopaedic surgery: a narrative review[J]. J Clin Orthop Trauma, 2021, 18: 209-215.
36 Larrainzar-Garijo R, Molanes-López EM, Cañones-Martín M, et al. Computer-assisted surgery enables beginner surgeons, under expert guidance, to achieve long-term clinical results not inferior to those of a skilled surgeon in knee arthroplasty[J]. Indian J Orthop, 2022, 56(8): 1439-1448.
37 Wang QJ, Goswami K, Shohat N, et al. Longer opera-tive time results in a higher rate of subsequent periprosthetic joint infection in patients undergoing primary joint arthroplasty[J]. J Arthroplast, 2019, 34(5): 947-953.
38 Fahrner R, Rauchfuß F, Bauschke A, et al. Robotic hepatic surgery in malignancy: review of the current literature[J]. J Robot Surg, 2019, 13(4): 533-538.
39 Zhang LL, Yuan QH, Xu Y, et al. Comparative clinical outcomes of robot-assisted liver resection versus laparoscopic liver resection: a meta-analysis[J]. PLoS One, 2020, 15(10): e0240593.
40 Wang Y, Cao D, Chen SL, et al. Current trends in three-dimensional visualization and real-time navigation as well as robot-assisted technologies in hepa-tobiliary surgery[J]. World J Gastrointest Surg, 2021, 13(9): 904-922.
41 Liu ZQ, Hsieh CT, Hsu WE, et al. Two-dimensional C-arm robotic navigation system (i-Navi) in spine surgery: a pilot study[J]. Int J Comput Assist Radiol Surg, 2022, 17(12): 2281-2290.
42 Brouwer de Koning SG, Geldof F, van Veen RLP, et al. Electromagnetic surgical navigation in patients undergoing mandibular surgery[J]. Sci Rep, 2021, 11(1): 4657.
43 Sorriento A, Porfido MB, Mazzoleni S, et al. Optical and electromagnetic tracking systems for biomedical applications: a critical review on potentialities and limitations[J]. IEEE Rev Biomed Eng, 2020, 13: 212-232.
44 Berger M, Kallus S, Nova I, et al. Approach to intraoperative electromagnetic navigation in orthognathic surgery: a phantom skull based trial[J]. J Cra-niomaxillofac Surg, 2015, 43(9): 1731-1736.
45 Lugez E, Sadjadi H, Pichora DR, et al. Electromagnetic tracking in surgical and interventional environments: usability study[J]. Int J Comput Assist Ra-diol Surg, 2015, 10(3): 253-262.
46 Oberthür S, Sehmisch S, Weiser L, et al. Does navigation still have a value in trauma surgery[J]. Orthopadie (Heidelb), 2022, 51(9): 719-726.
47 Liu Y, Wang F, Zhang QC, et al. Diagnostic yield of virtual bronchoscope navigation combined with radial endobronchial ultrasound guided transbronchial cryo-biopsy for peripheral pulmonary nodules: a prospective, randomized, controlled trial[J]. Ann Transl Med, 2022, 10(8): 443.
48 刘敏, 孙国文, 唐恩溢. 计算机导航技术在口腔颌面外科应用中的新发展[J]. 中华口腔医学研究杂志(电子版), 2017, 11(3): 174-177.
Liu M, Sun GW, Tang EY. New development of computer-aided navigation for oral and maxillofacial surgery[J]. Chin J Stomatol Res (Electron Ed), 2017, 11(3): 174-177.
49 Figueroa F, Figueroa D, Guiloff R, et al. Navigation in anterior cruciate ligament reconstruction: state of the art[J]. J ISAKOS, 2023, 8(1): 47-53.
50 Eckstein FM, Zeller AN, Neuhaus MT, et al. Refe-rencing for intraoperative navigation: evaluation of human bias[J]. J Stomatol Oral Maxillofac Surg, 2022, 123(4): 401-404.
51 Landaeta-Quinones CG, Hernandez N, Zarroug NK. Computer-assisted surgery: applications in dentistry and oral and maxillofacial surgery[J]. Dent Clin North Am, 2018, 62(3): 403-420.
52 Strong EB, Gary C. Management of zygomaticomaxillary complex fractures[J]. Facial Plast Surg Clin North Am, 2017, 25(4): 547-562.
53 Sabelis JF, Schreurs R, Essig H, et al. Personalized medicine workflow in post-traumatic orbital reconstruction[J]. J Pers Med, 2022, 12(9): 1366.
54 Wilkat M, Kübler N, Rana M. Advances in the resection and reconstruction of midfacial tumors through computer assisted surgery[J]. Front Oncol, 2021, 11: 719528.
55 Fu K, Liu YM, Gao N, et al. Reconstruction of ma-xillary and orbital floor defect with free fibula flap and whole individualized titanium mesh assisted by computer techniques[J]. J Oral Maxillofac Surg, 2017, 75(8): 1791.e1-1791791.e9.
[1] GAO Chao, TANG Wei, TIAN Wei- dong. Application of image - guided surgical navigation system in or al and maxillofaci [J]. Inter J Stomatol, 2008, 35(4): 447-447~449.
[2] PENG Guo-guang1, ZHAO Ji-gang1, XA Wei1, XIONG Kun2.. The Clinical Study of Flapless Dental Implant Surgery [J]. Foreign Med Sci: Stomatol, 2006, 33(05): 407-409.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .