Inter J Stomatol ›› 2016, Vol. 43 ›› Issue (2): 228-232.doi: 10.7518/gjkq.2016.02.025

Previous Articles     Next Articles

Research progress on alanine racemase

Qiu Wei, Zhou Xuedong, Li Mingyun   

  1. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
  • Received:2015-07-22 Revised:2015-12-08 Online:2016-03-01 Published:2016-03-01

Abstract: Alanine racemase(ALR) is a pyridoxal phosphate-dependent enzyme that catalyzes reversible racemization between enantiomers of alanine. The enzyme is widely used/existed in lower organisms and is closely related to diseases caused by bacteria. In recent years, ALR has become an ideal design target of antibacterial drugs. Streptococcus mutans(S. mutans) is the main pathogenic bacteria in dental caries, and the main cariogenic virulence of S.mutans includes acid production, ability of adhesion and synthesis of polysaccharide. This review will systematically summarize the classifications, structure characteristics, physiological function, and application of ALR. A comprehensive understanding of the relationship between ALR and cariogenic virulence of S.mutans is useful and can provide an important theoretical basis for additional research on the potential antibacterial drug target to caries.

Key words: alanine racemase, cariogenecities, physiological function, alanine racemase, cariogenecities, physiological function

CLC Number: 

  • Q 55

TrendMD: 
[1] Neuhaus FC, Baddiley J. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria[J]. Microbiol Mol Biol Rev, 2003, 67(4):686-723.
[2] Milligan DL, Tran SL, Strych U, et al. The alanine racemase of Mycobacterium smegmatis is essential for growth in the absence of D-alanine[J]. J Bacteriol, 2007, 189(22):8381-8386.
[3] Chesnokova ON, McPherson SA, Steichen CT, et al. The spore-specific alanine racemase of Bacillus anthracis and its role in suppressing germination during spore development[J]. J Bacteriol, 2009, 191(4):1303-1310.
[4] Hoffmann K, Schneider-Scherzer E, Kleinkauf H, et al. Purification and characterization of eucaryotic alanine racemase acting as key enzyme in cyclosporin biosynthesis[J]. J Biol Chem, 1994, 269(17):12710-12714.
[5] Cheng YQ, Walton JD. A eukaryotic alanine racemase gene involved in cyclic peptide biosynthesis[J]. J Biol Chem, 2000, 275(7):4906-4911.
[6] Uo T, Yoshimura T, Tanaka N, et al. Functional characterization of alanine racemase from Schizosaccharomyces pombe: a eucaryotic counterpart to bacterial alanine racemase[J]. J Bacteriol, 2001, 183(7):2226-2233.
[7] Matsushima O, Hayashi YS. Metabolism of D-and L-alanine and regulation of intracellular free amino acid levels during salinity stress in a brackish-water bivalve Corbicula japonica[J]. Comp Biochem Physiol, 1992, 102(92):465-471.
[8] Nomura T, Yamamoto I, Morishita F, et al. Purification and some properties of alanine racemase from a bivalve mollusc Corbicula japonica[J]. J Exp Zool, 2001, 289(1):1-9.
[9] Shibata K, Shirasuna K, Motegi K, et al. Purification and properties of alanine racemase from crayfish Procambarus clarkii[J]. Comp Biochem Physiol B Biochem Mol Biol, 2000, 126(4):599-608.
[10] Fujita E, Okuma E, Abe H. Occurrence of alanine racemase in crustaceans and the changes of the properties during seawater acclimation of crayfish[J]. Comp Biochem Physiol, 1997, 116(96):83-87.
[11] Yoshikawa N, Dhomae N, Takio K, et al. Purification, properties, and partial amino acid sequences of alanine racemase from the muscle of the black tiger prawn Penaeus monodon[J]. Comp Biochem Physiol B Biochem Mol Biol, 2002, 133(3):445-453.
[12] Ono K, Yanagida K, Oikawa T, et al. Alanine racemase of alfalfa seedlings(Medicago sativa L.): first evidence for the presence of an amino acid racemase in plants[J]. Phytochemistry, 2006, 67(9):856-860.
[13] Watanabe A, Yoshimura T, Mikami B, et al. Reaction mechanism of alanine racemase from Bacillus stearothermophilus: X-ray crystallographic studies of the enzyme bound with N-(5’-phosphopyridoxyl) alanine[J]. J Biol Chem, 2002, 277(21):19166-19172.
[14] Kang L, Shaw AC, Xu D, et al. Upregulation of Met C is essential for D-alanine-independent growth of an alr/dadX-deficient Escherichia coli strain[J]. J Bacteriol, 2011, 193(5):1098-1106.
[15] Ju J, Yokoigawa K, Misono H, et al. Cloning of alanine racemase genes from Pseudomonas fluorescens strains and oligomerization states of gene products expressed in Escherichia coli[J]. J Biosci Bioeng, 2005, 100(4):409-417.
[16] Radkov AD, Moe LA. Amino acid racemization in Pseudomonas putida KT2440[J]. J Bacteriol, 2013, 195(22):5016-5024.
[17] 张彩凤, 徐书景, 李艳红, 等. 丙氨酸消旋酶的研究进展[J]. 安徽农业科学, 2011, 39(15):8836-8839.
Zhang CF, Xu SJ, Li YH, et al. Research progress of alanine racemase[J]. J Anhui Agri Sci, 2011, 39(15):8836-8839.
[18] Scaletti ER, Luckner SR, Krause KL. Structural features and kinetic characterization of alanine racemase from Staphylococcus aureus(Mu50)[J]. Acta Crystallogr D Biol Crystallogr, 2012, 68(Pt 1):82-92.
[19] Priyadarshi A, Lee EH, Sung MW, et al. Structural insights into the alanine racemase from Enterococcus faecalis[J]. Biochim Biophys Acta, 2009, 1794(7):1030-1040.
[20] Chacon O, Bermudez LE, Zinniel DK, et al. Impairment of D-alanine biosynthesis in Mycobacterium smegmatis determines decreased intracellular survival in human macrophages[J]. Microbiology, 2009, 155 (Pt 5):1440-1450.
[21] Venir E, Del Torre M, Cunsolo V, et al. Involvement of alanine racemase in germination of Bacillus cereus spores lacking an intact exosporium[J]. Arch Microbiol, 2014, 196(2):79-85.
[22] Kolodkin-Gal I, Romero D, Cao S, et al. D-amino acids trigger biofilm disassembly[J]. Science, 2010, 328(5978):627-629.
[23] Hochbaum AI, Kolodkin-Gal I, Foulston L, et al. Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development[J]. J Bacteriol, 2011, 193(20):5616-5622.
[24] Halouska S, Fenton RJ, Zinniel DK, et al. Metabolomics analysis identifies D-alanine-D-alanine ligase as the primary lethal target of D-cycloserine in mycobacteria[J]. J Proteome Res, 2014, 13(2):1065-1076.
[25] Tripathi RP, Tripathi R, Tiwari VK, et al. Synthesis of glycosylated beta-amino acids as new class of antitubercular agents[J]. Eur J Med Chem, 2002, 37(9):773-781.
[26] Dong LI, Zhou R. Progress in the research of antituberculous drugs(?)[J]. Chin J New Drugs, 2009, 18(1):35-42.
[27] Ciustea M, Mootien S, Rosato AE, et al. Thiadiazolidinones: a new class of alanine racemase inhibitors with antimicrobial activity against methicillin-resistant Staphylococcus aureus[J]. Biochem Pharmacol, 2012, 83(3):368-377.
[28] Nguyen TT, Mathiesen G, Fredriksen L, et al. A food-grade system for inducible gene expression in Lactobacillus plantarum using an alanine racemaseencoding selection marker[J]. J Agric Food Chem, 2011, 59(10):5617-5624.
[29] 刘开云, 孙红武, 张卫军, 等. 变异链球菌防治药物的研究现状[J]. 国际口腔医学杂志, 2012, 39(5):683-685.
Liu KY, Sun HW, Zhang WJ, et al. Research progress on drug prevention of Streptococcus mutans [J]. Int J Stomatol, 2012, 39(5):683-685.
[30] 陆慧, 李永亮, 孙育杰, 等. 变异链球菌alr缺失突变株的构建及初步观察[J]. 微生物学杂志, 2013, 33(4):9-13.
Lu H, Li YL, Sun YJ, et al. Construction and preliminary observation of Streptococcus mutans alr deletion mutant[J]. J Microbiol, 2013, 33(4):9-13.
(本文采编 王晴)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .