国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (4): 505-512.doi: 10.7518/gjkq.2024057

• 综述 • 上一篇    

小整联蛋白结合配体N端联结糖蛋白家族在硬组织发育中的调控作用

徐思为(),李蕙,刘磊()   

  1. 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心四川大学华西口腔医院创伤与整形外科 成都 610041
  • 收稿日期:2023-12-04 修回日期:2024-03-15 出版日期:2024-07-01 发布日期:2024-06-24
  • 通讯作者: 刘磊
  • 作者简介:徐思为,医师,硕士,Email:drxusiwei@foxmail.com
  • 基金资助:
    国家自然科学基金青年科学基金(82100961)

Role of the small integrin-binding ligand N-linked glycoprotein family in regulating hard tissue development

Siwei Xu(),Hui Li,Lei Liu()   

  1. State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Trauma and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2023-12-04 Revised:2024-03-15 Online:2024-07-01 Published:2024-06-24
  • Contact: Lei Liu
  • Supported by:
    Youth Science Fund Projects of National Natural Science Foundation of China(82100961)

摘要:

硬组织发育是生物机体发育过程中的重要组成部分,小整联蛋白结合配体N端联结糖蛋白家族在硬组织发育过程中发挥重要的调控作用,如:促进干细胞的成牙本质分化或成骨分化,调控成牙本质细胞或成骨细胞的基因表达等。编码小整联蛋白结合配体N端联结糖蛋白家族的基因发生突变可引起硬组织矿化异常,导致如低血磷性佝偻病、牙本质发育不全等多种疾病。近年来,学者们对该蛋白家族在硬组织发育中的调控作用开展了深入研究,揭示了该蛋白家族的主要分子调控机制,加深了对其作用及机制的认知。因此,本文对小整联蛋白结合配体N端联结糖蛋白家族在生物硬组织发育中的调控作用及其机制的研究进展进行总结和综述。

关键词: 小整联蛋白结合配体N端联结糖蛋白家族, 硬组织, 生物矿化

Abstract:

The development of hard tissue is a crucial aspect of organismic development. The small integrin-binding ligand N-linked glycoprotein family plays a pivotal role in regulating hard tissue development, including promoting the differentiation of stem cells into odontoblasts or osteoblasts and regulating the gene expression of these cells. Research showed that mutations in the genes encoding this protein family can lead to abnormal mineralization of hard tissue, resul-ting in diseases such as hypophosphatemic rickets and dentinogenesis imperfecta. In recent years, scholars have conducted in-depth research on this protein family involved in hard tissue development. These studies have revealed the main mole-cular regulatory mechanism of the protein family and deepened our understanding of its role and mechanism. This review summarizes the role and the associated molecular regulatory mechanisms of the small integrin-binding ligand N-linked glycoprotein family in regulating hard tissue development.

Key words: small integrin-binding ligand N-linked glycoprotein family, hard tissue, biomineralization

中图分类号: 

  • R394.1
1 侯超, 李纾. 小整联蛋白结合配体N-连结糖蛋白家族成员在牙发育中的作用[J]. 国际口腔医学杂志, 2011, 38(4): 412-415.
Hou C, Li S. Role of small integrin-binding ligand N-linked glycoprotein family in tooth development[J]. Int J Stomatol, 2011, 38(4): 412-415.
2 Li H, Jing Y, Zhang R, et al. Hypophosphatemic rickets accelerate chondrogenesis and cell trans-differentiation from TMJ chondrocytes into bone cells via a sharp increase in β‑catenin[J]. Bone, 2020, 131: 115151.
3 Ni XL, Li X, Zhang Q, et al. Clinical characteristics and bone features of autosomal recessive hypophosphatemic rickets type 1 in three Chinese families: report of five Chinese cases and review of the literature[J]. Calcif Tissue Int, 2020, 107(6): 636-648.
4 Liang T, Zhang H, Xu Q, et al. Mutant dentin sialophosphoprotein causes dentinogenesis imperfecta[J]. J Dent Res, 2019, 98(8): 912-919.
5 Liu QL, Ma N, Zhu QL, et al. Dentin sialophosphoprotein deletion leads to femoral head cartilage attenuation and subchondral bone ill-mineralization[J]. J Histochem Cytochem, 2020, 68(10): 703-718.
6 Vancea A, Serban O, Fodor D. Relationship between osteopontin and bone mineral density[J]. Acta Endocrinol, 2021, 17(4): 509-516.
7 Nikoloudaki G. Functions of matricellular proteins in dental tissues and their emerging roles in orofacial tissue development, maintenance, and disease[J]. Int J Mol Sci, 2021, 22(12): 6626.
8 Rowe PS. The chicken or the egg: PHEX, FGF23 and SIBLINGs unscrambled[J]. Cell Biochem Funct, 2012, 30(5): 355-375.
9 Ritchie H. The functional significance of dentin sialoprotein-phosphophoryn and dentin sialoprotein[J]. Int J Oral Sci, 2018, 10(4): 31.
10 Shi C, Ma N, Zhang W, et al. Haploinsufficiency of Dspp gene causes dentin dysplasia type Ⅱ in mice[J]. Front Physiol, 2020, 11: 593626.
11 陈栋, 王莹莹, 李晓聪, 等. 牙本质涎磷蛋白、Ⅰ型胶原蛋白在vps4b基因敲除鼠磨牙牙胚发育中的时空表达[J]. 华西口腔医学杂志, 2019, 37(3): 248-252.
Chen D, Wang YY, Li XC, et al. Spatio-temporal expression of dentin sialophosphoprotein and collagen Ⅰ during molar tooth germ development in vps4b knockout mouse[J]. West China J Stomatol, 2019, 37(3): 248-252.
12 Liu MM, Li WT, Xia XM, et al. Dentine sialophosphoprotein signal in dentineogenesis and dentine regeneration[J]. Eur Cell Mater, 2021, 42: 43-62.
13 Chen YH, Pethö A, Ganapathy A, et al. DPP promotes odontogenic differentiation of DPSCs through NF-κB signaling[J]. Sci Rep, 2021, 11(1): 22076.
14 Korkmaz Y, Imhof T, Kämmerer PW, et al. The colocalizations of pulp neural stem cells markers with dentin matrix protein-1, dentin sialoprotein and dentin phosphoprotein in human denticle (pulp stone) lining cells[J]. Anat Anz Off Organ Anat Gesell, 2022, 239: 151815.
15 Wang J, McVicar A, Chen YL, et al. Atp6i deficient mouse model uncovers transforming growth factor-β1/Smad2/3 as a key signaling pathway regulating odontoblast differentiation and tooth root formation[J]. Int J Oral Sci, 2023, 15(1): 35.
16 Shan PF, Wang XL, Zhang YY, et al. P75 neurotrophin receptor positively regulates the odontoge-nic/osteogenic differentiation of ectomesenchymal stem cells via nuclear factor kappa-B signaling pathway[J]. Bioengineered, 2022, 13(4): 11201-11213.
17 Li Y, Wu MY, Xing XY, et al. Effect of Wnt10a/β- catenin signaling pathway on promoting the repair of different types of dentin-pulp injury[J]. In Vitro Cell Dev Biol Anim, 2023, 59(7): 486-504.
18 Ma HZ, Sheng XY, Chen WT, et al. PER2 regulates odontoblastic differentiation of dental papilla cells in vitro via intracellular ATP content and reactive oxygen species levels[J]. PeerJ, 2023, 11: e16489.
19 Chen J, Xu HX, Xia K, et al. Resolvin E1 accele-rates pulp repair by regulating inflammation and stimulating dentin regeneration in dental pulp stem cells[J]. Stem Cell Res Ther, 2021, 12(1): 75.
20 Ihn HJ, Kim JA, Lim J, et al. Bobby sox homolog regulates tooth root formation through modulation of dentin sialophosphoprotein[J]. J Cell Physiol, 2021, 236(1): 480-488.
21 Figueredo CA, Abdelhay N, Ganatra S, et al. The role of dentin sialophosphoprotein (DSPP) in craniofacial development[J]. J Oral Biol Craniofac Res, 2022, 12(5): 673-678.
22 Ye JP, Wang Y, Zhu QL, et al. Primary observation of the role of posttranslational modification of dentin sialophosphoprotein (DSPP) on postnatal deve-lopment of mandibular condyle in mice[J]. Arch Oral Biol, 2021, 125: 105086.
23 Martin A, Kentrup D. The role of DMP1 in CKD-MBD[J]. Curr Osteoporos Rep, 2021, 19(5): 500-509.
24 Martin A. Bone and heart health in chronic kidney disease: role of dentin matrix protein 1[J]. Curr Opin Nephrol Hypertens, 2019, 28(4): 297-303.
25 Bastida G, Ramírez F, Exeni G, et al. First report in Argentina of a pathogenic DMP1 variant associated with autosomal recessive hypophosphatemic rickets[J]. Arch Argent Pediatr, 2023, 121(2): e202202682.
26 Dussold C, Gerber C, White S, et al. DMP1 prevents osteocyte alterations, FGF23 elevation and left ventricular hypertrophy in mice with chronic kidney disease[J]. Bone Res, 2019, 7: 12.
27 Xue H, Niu PP, Liu Y, et al. Glycosylation of DMP1 promotes bone reconstruction in long bone defects[J]. Biochem Biophys Res Commun, 2020, 526(4): 1125-1130.
28 Liu Y, Niu PP, Zhou MQ, et al. The role of proteoglycan form of DMP1 in cranial repair[J]. BMC Mol Cell Biol, 2022, 23(1): 43.
29 Zhang SF, Wan HX, Wang P, et al. Extracellular matrix protein DMP1 suppresses osteogenic differentiation of mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2018, 501(4): 968-973.
30 Merkel A, Chen YH, George A. Endocytic traffic-king of DMP1 and GRP78 complex facilitates osteogenic differentiation of human periodontal ligament stem cells[J]. Front Physiol, 2019, 10: 1175.
31 Ahmad AR, Kaewpungsup P, Khorattanakulchai N, et al. Recombinant human dentin matrix protein 1 (hDMP1) expressed in nicotiana benthamiana potentially induces osteogenic differentiation[J]. Plants (Basel), 2019, 8(12): 566.
32 Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin[J]. Clin Biochem, 2018, 59: 17-24.
33 Si JY, Wang CW, Zhang DH, et al. Osteopontin in bone metabolism and bone diseases[J]. Med Sci Monit, 2020, 26: e919159.
34 Bai RJ, Li YS, Zhang FJ. Osteopontin, a bridge links osteoarthritis and osteoporosis[J]. Front Endocrinol (Lausanne), 2022, 13: 1012508.
35 Depalle B, McGilvery CM, Nobakhti S, et al. Osteopontin regulates type Ⅰ collagen fibril formation in bone tissue[J]. Acta Biomater, 2021, 120: 194-202.
36 Foster BL, Ao M, Salmon CR, et al. Osteopontin regulates dentin and alveolar bone development and mineralization[J]. Bone, 2018, 107: 196-207.
37 Dab S, Abdelhay N, Figueredo CA, et al. Characte-rization of SIBLING proteins in the mineralized tissues[J]. Dent J (Basel), 2022, 10(8): 144.
38 Kriegel A, Schlosser C, Habeck T, et al. Bone sialoprotein immobilized in collagen type Ⅰ enhances bone regeneration in vitro and in vivo [J]. Int J Bioprint, 2022, 8(3): 591.
39 Honma M, Ikebuchi Y, Suzuki H. RANKL as a key figure in bridging between the bone and immune system: its physiological functions and potential as a pharmacological target[J]. Pharmacol Ther, 2021, 218: 107682.
40 Son A, Kang N, Kang JY, et al. TRPM3/TRPV4 re-gulates Ca2+-mediated RANKL/NFATc1 expression in osteoblasts[J]. J Mol Endocrinol, 2018, 61(4): 207-218.
41 Chen ZY, Cheng ZX, Tang ZC, et al. Interleukin-13 reduces bone erosion in rheumatoid arthritis by up-regulating osteoprotegerin expression in fibroblast-like synoviocytes: an in vitro and in vivo study[J]. Clin Exp Rheumatol, 2023, 41(11): 2151-2161.
42 Vijaykumar A, Dyrkacz P, Vidovic-Zdrilic I, et al. Expression of BSP-GFPtpz transgene during osteogenesis and reparative dentinogenesis[J]. J Dent Res, 2020, 99(1): 89-97.
43 Hoz L, López S, Zeichner-David M, et al. Regeneration of rat periodontium by cementum protein 1-derived peptide[J]. J Periodontal Res, 2021, 56(6): 1223-1232.
44 Maalouf M, Çinar H, Bouleftour W, et al. Deletion of osteopontin or bone sialoprotein induces opposite bone responses to mechanical stimulation in mice[J]. Bone Rep, 2022, 17: 101621.
45 Mo L, Ma C, Wang ZZ, et al. Integrated bioinformatic analysis of the shared molecular mechanisms between osteoporosis and atherosclerosis[J]. Front Endocrinol (Lausanne), 2022, 13: 950030.
46 Cirano FR, Pimentel SP, Ribeiro FV, et al. Impact of history of periodontitis on gene expression of bone-related factors in young patients[J]. Braz Oral Res, 2020, 34: e014.
47 Staines KA, MacRae VE, Farquharson C. The importance of the SIBLING family of proteins on ske-letal mineralisation and bone remodelling[J]. J Endocrinol, 2012, 214(3): 241-255.
48 Christensen B, Schytte GN, Scavenius C, et al. FAM20C-mediated phosphorylation of MEPE and its acidic serine- and aspartate-rich motif[J]. JBMR Plus, 2020, 4(8): e10378.
49 Ozsen A, Furman A, Guran T, et al. Fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein levels in healthy children and, pregnant and puerperal women[J]. Horm Res Paediatr, 2019, 92(5): 302-310.
50 Schrauwen I, Valgaeren H, Tomas-Roca L, et al. Variants affecting diverse domains of MEPE are associated with two distinct bone disorders, a craniofacial bone defect and otosclerosis[J]. Genet Med, 2019, 21(5): 1199-1208.
51 Gullard A, Gluhak-Heinrich J, Papagerakis S, et al. MEPE localization in the craniofacial complex and function in tooth dentin formation[J]. J Histochem Cytochem, 2016, 64(4): 224-236.
52 Li XF, Wang L, Su Q, et al. Potential roles of bone morphogenetic protein 9 in the odontogenic diffe-rentiation of dental pulp cells[J]. J Endod, 2021, 47(3): 436-443.
53 Yao B, Cheng XG, Mei XH, et al. Profiling long noncoding RNA alterations during the stromal cell-derived factor-1α-induced odontogenic differentiation of human dental pulp stem cells[J]. Arch Oral Biol, 2022, 137: 105393.
54 Liu ZN, Lin YX, Fang XL, et al. Epigallocatechin-3-gallate promotes osteo-/odontogenic differentiation of stem cells from the apical papilla through activa-ting the BMP-smad signaling pathway[J]. Molecules, 2021, 26(6): 1580.
55 Saito K, Nakatomi M, Ohshima H. Dentin matrix protein 1 compensates for lack of osteopontin in re-gulating odontoblastlike cell differentiation after tooth injury in mice[J]. J Endod, 2020, 46(1): 89-96.
[1] 曹正国. 修复治疗相关的牙周问题考量[J]. 国际口腔医学杂志, 2022, 49(1): 1-11.
[2] 李媛媛,陈俊宇,蔡和,万乾炳. 甲状旁腺激素及甲状旁腺素相关肽在牙齿硬组织形成中的作用[J]. 国际口腔医学杂志, 2021, 48(6): 703-710.
[3] SupriyaShakya,张鑫,王剑. 种植盾构术的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 109-114.
[4] 米梦梦,夏海斌,王敏. 釉基质蛋白衍生物在口腔种植中的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 522-526.
[5] 武诗语 麦穗. 玻璃离子在牙本质再矿化中的作用[J]. 国际口腔医学杂志, 2015, 42(1): 114-118.
[6] 陶婷婷 李长真 杨恒 丁一. 锥形束CT在牙周影像学检查中的应用研究初探[J]. 国际口腔医学杂志, 2014, 41(4): 412-414.
[7] 欧伟1 孙卫斌2. 牙骨质蛋白1的生物学作用及应用前景[J]. 国际口腔医学杂志, 2014, 41(2): 209-212.
[8] 彭明慧1 吴燕2 亢静1 周建明1 李小兵3. 垂直生长型安氏Ⅱ类1 分类拔牙病例矫治前后硬组织的改变[J]. 国际口腔医学杂志, 2012, 39(3): 290-293.
[9] 张钰芳综述 周诺审校. 颅面部三维图像融合技术的研究进展[J]. 国际口腔医学杂志, 2011, 38(3): 354-357.
[10] 昝琳, 林宝山, 邓潇, 陈嵩. 不同生长期安氏Ⅱ类1 分类错牙合畸形患者非拔牙矫治的疗效评估[J]. 国际口腔医学杂志, 2009, 36(3): 276-280.
[11] 刘冬梅1综述 董福生2审校. 牙本质基质蛋白-1 与生物矿化[J]. 国际口腔医学杂志, 2009, 36(1): 98-98~101.
[12] 何利邦综述 李继遥审校. 外漂白对牙体硬组织影响的研究进展[J]. 国际口腔医学杂志, 2008, 35(5): 526-526~528.
[13] 程磊综述 周学东审校. 釉质生物矿化的结晶学研究进展[J]. 国际口腔医学杂志, 2008, 35(3): 246-246~248.
[14] 程磊综述 周学东审校. 骨保护素及其在釉质矿化中的作用机制[J]. 国际口腔医学杂志, 2008, 35(2): 116-118.
[15] 楚金普,周学东,. 牙齿硬组织脱矿与再矿化的研究方法[J]. 国际口腔医学杂志, 2006, 33(01): 3-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!