国际口腔医学杂志 ›› 2026, Vol. 53 ›› Issue (1): 124-133.doi: 10.7518/gjkq.2026205

• 综述 • 上一篇    下一篇

血管吻合术的临床应用与研究进展

王世忠(),张乐汶,李志轩,丁张帆,闫冰(),李春洁   

  1. 口腔疾病防治全国重点实验室 国家口腔医学中心 口腔疾病国家临床医学研究中心四川大学华西口腔医院头颈肿瘤外科 成都 610041
  • 收稿日期:2024-12-04 修回日期:2025-06-04 出版日期:2026-01-01 发布日期:2025-12-31
  • 通讯作者: 闫冰
  • 作者简介:王世忠,学士,Email:2021151640178@stu.scu.edu.cn
  • 基金资助:
    四川省自然科学基金青年基金(2024NSFSC1590);成都市科技项目技术创新研发项目(2024-YF05-00437-SN)

Clinical application and development of vascular anastomosis

Shizhong Wang(),Lewen Zhang,Zhixuan Li,Zhangfan Ding,Bing Yan(),Chunjie Li   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-12-04 Revised:2025-06-04 Online:2026-01-01 Published:2025-12-31
  • Contact: Bing Yan
  • Supported by:
    Sichuan Provincial Natural Science Foundation Youth Fund(2024NSFSC1590);Chengdu Science and Technology Project Technology Innovation Research and Development Project(2024-YF05-00437-SN)

摘要:

血管吻合术在口腔颌面外科、整复外科以及心血管外科等领域应用广泛。传统血管吻合术操作难度大、时间长,对术者有较高要求。近年来,新型血管吻合技术、内镜下吻合术、显微血管吻合术等技术的快速发展为临床实践提供了更多选择,同时也提高了手术效率,降低了手术风险。这些技术在微小血管吻合、组织器官修复重建以及超显微外科等领域展现出了独特优势。血管吻合新技术不仅为外科医生提供了便利,也满足了各类患者的不同需求,帮助外科医生为患者提供更优质的诊疗。本文从手工缝合技术、血管吻合辅助装置及数字化技术、新型材料吻合技术3个方面总结了血管吻合术的最新进展,旨在帮助外科医生了解血管吻合技术发展动态,为各类术式选择提供参考。

关键词: 血管吻合, 机器人手术, 显微外科, 血管假体

Abstract:

Vascular anastomosis is widely used in oral and maxillofacial surgery, plastic and reconstructive surgery, and cardiovascular surgery. Conventional vascular anastomosis is challenging and time-consuming, hence demanding for surgeons. In recent years, new vascular suture anastomosis techniques, endoscopic anastomosis, and microvascular anastomosis have provided additional choices for clinical practice, improved the efficiency of the operation, and reduced the risk of the operation. These methods have demonstrated unique advantages in microvascular anastomosis, organ reconstruction, and ultra-microsurgery. These advances not only provide increased convenience for surgeons but also meet the needs of different types of patients for enhanced therapeutic outcomes. In this review, the recent advances in the techniques of vascular anastomosis are summarized from three aspects: manual suture techniques, vascular anastomosis assistive devi-ces and digital technology, and anastomosis based on biomaterials. This review aims to help surgeons understand the deve-lopment trends of vascular anastomosis technology and provide references for the selection of surgical procedures.

Key words: vascular anastomosis, robotic surgical, microsurgery, vascular prosthesis

中图分类号: 

  • R616.2

图 1

人工缝合术操作示意图A:任氏血管吻合术;B:Y-I型血管吻合术;C:II-Y型血管吻合术;D:“多U”技术;E:“卷袖”技术。"

图 2

磁性血管吻合术A:装置结构,由2个外周的磁环与1个中间的铆钉环构成;B:磁性血管装置的使用方法与吻合过程。"

图 3

血管耦合器吻合术A:耦合器装置示意图与操作示意图;B:使用耦合器的外部装置与操作示意图。"

图 4

合成血管材料应用A:人工血管置换术操作示意图;B:可生物降解合成血管置换操作示意图,其中小图为该材料引导的新芽与自组装毛细血管吻合。"

表 1

各种血管吻合术的优点与缺点"

方法优点缺点
人工缝合术应用范围广泛,对设备仪器要求低1)手术时间长,技术要求高;2)不可吸收的缝合材料可能导致炎症、血小板聚集等问题。
内镜下吻合术侵入性小,安全性高技术难度大
显微血管吻合术适用于微小血管操作,精度较高需要高倍显微镜及特殊器械,技术难度大
磁性血管吻合术1)吻合快速,步骤简便;2)无异物残留,血管内膜更加平滑,血管损伤小技术应用在初期阶段,需进一步临床验证
激光血管吻合术1)高精度、快速,感染风险低;2)适用于需迅速精确完成血管连接的情景1)有渗漏问题,血栓形成风险增加;2)临床数据少,需进一步临床验证
血管耦合器/吻合器/夹子吻合术1)血管吻合流程简易,手术时间短;2)形成血栓风险降低1)可能导致血管变形等问题;2)运动或表浅等部位的使用有明显异物感
自动吻合机器人辅助技术手术精确度、操作灵活性及手术效率提高成本高,技术及设备普及度有限
黏合剂吻合技术1)手术时间缩短,操作负担减轻;2)术中出血风险降低,确保吻合处均匀性1)对大型或高压血管的连接效果有限;2)可能存在生物安全性问题
合成血管材料应用可生物降解材料有助于血管自然修复和生长材料生物相容性和长期稳定性仍需评估

《高阶颧种植:ZAGA理念》出版发行"

[1] Moritz WR, Raman S, Pessin S, et al. The history and innovations of blood vessel anastomosis[J]. Bioengineering(Basel), 2022, 9(2): 75.
[2] Wolf-de Jonge IC, Beek JF, Balm R. 25 years of laser assisted vascular anastomosis (LAVA): what have we learned[J]. Eur J Vasc Endovasc Surg, 2004, 27(5): 466-476.
[3] Zeebregts CJ, Heijmen RH, van den Dungen JJ, et al. Non-suture methods of vascular anastomosis[J]. Br J Surg, 2003, 90(3): 261-271.
[4] 任振虎, 吴汉江, 朱兆夫, 等. 应用血管吻合新方法109例回顾性研究[J]. 中华口腔医学杂志, 2013, 48(12): 708-710.
Ren ZH, Wu HJ, Zhu ZF, et al. The application of a new method of microvascular anastomosis: a review of 109 microvascular anastomosis surgery[J]. Chin J Stomatol, 2013, 48(12): 708-710.
[5] 李小林, 黄忠亮, 苏瑜, 等. 任氏血管吻合法在口腔癌术后缺损修复中的应用[J]. 临床口腔医学杂志, 2022, 38(3): 167-169.
Li XL, Huang ZL, Su Y, et al. Application of Ren anastomosis in postoperative reconstruction of oral cancer[J]. J Clin Stomatol, 2022, 38(3): 167-169.
[6] 郭丰源, 李文强, 许智, 等. 任氏血管吻合法在口腔颌面部缺损修复中的应用及评价[J]. 口腔医学研究, 2019, 35(11): 1048-1051.
Guo FY, Li WQ, Xu Z, et al. Application of Ren anastomosis in the reconstruction of oral and maxillofacial defects[J]. J Oral Sci Res, 2019, 35(11): 1048-1051.
[7] 李春洁, 韩波, 朱桂全. 口腔颌面部缺损游离皮瓣修复中血管吻合的技巧及关键点[J]. 华西口腔医学杂志, 2022, 40(3): 271-278.
Li CJ, Han B, Zhu GQ. Vessel anastomosis in free flap reconstruction for oral and maxillofacial defects: techniques and key points[J]. West China J Stomatol, 2022, 40(3): 271-278.
[8] Guo Z, Cui W, Hu M, et al. Comparison of hand-sewn versus modified coupled arterial anastomoses in head and neck reconstruction: a single operator’s experience[J]. Int J Oral Maxillofac Surg, 2020, 49(9): 1162-1168.
[9] Miao C, Ma ZK, Li CJ. II-Y-shaped vascular anastomosis for free flap transfer in head and neck reconstruction in vessel-depleted neck[J]. J Craniofac Surg, 2023, 34(2): 735-737.
[10] Kuo SC, Tsai YJ, Kuo PJ, et al. The multiple-U technique: a novel microvascular anastomosis technique that guarantees everted anastomosis sites with solid intima-to-intima contact[J]. Plast Reconstr Surg, 2022, 149(5): 981e-984e.
[11] Scaglioni MF, Kuo YR, Chen YC. The “rolled-up sleeve” technique for microvascular venous anastomosis in head and neck reconstruction[J]. Ann Plast Surg, 2016, 76(): S121-S124.
[12] 张铁慧, 梁武, 任远飞, 等. 含血管内皮生长因子缓释微粒显微缝线促进大鼠小血管吻合后的内皮再生[J]. 中国组织工程研究, 2018, 22(6): 877-882.
Zhang TH, Liang W, Ren YF, et al. Application of microsutures with vascular endothelial growth factor to improve vascular endothelial regeneration after small vessel anastomosis in the rats[J]. Chin J Tis Eng Res, 2018, 22(6): 877-882.
[13] Borchiellini P, Rames A, Roubertie F, et al. Development and characterization of biological sutures made of cell-assembled extracellular matrix[J]. Biofabrication, 2023, 15(4). doi: 10.1088/1758-5090/acf1cf .
doi: 10.1088/1758-5090/acf1cf
[14] Xue F, Zhao S, Tian H, et al. Two way workable microchanneled hydrogel suture to diagnose, treat and monitor the infarcted heart[J]. Nat Commun, 2024, 15(1): 864.
[15] Segers B, Horn D, Lemaitre J, et al. Preliminary results from a prospective study of laparoscopic aortobifemoral bypass using a clampless and sutureless aortic anastomotic technique[J]. Eur J Vasc Endovasc Surg, 2014, 48(4): 400-406.
[16] Rickard RF, Hudson DA. A history of vascular and microvascular surgery[J]. Ann Plast Surg, 2014, 73(4): 465-472.
[17] Pratt GF, Rozen WM, Westwood A, et al. Technology-assisted and sutureless microvascular anastomoses: evidence for current techniques[J]. Microsurgery, 2012, 32(1): 68-76.
[18] Koshima I, Yamamoto T, Narushima M, et al. Perforator flaps and supermicrosurgery[J]. Clin Plast Surg, 2010, 37(4): 683-689.
[19] Masia J, Olivares L, Koshima I, et al. Barcelona consensus on supermicrosurgery[J]. J Reconstr Microsurg, 2014, 30(1): 53-58.
[20] Yamamoto T. Onco-reconstructive supermicrosurgery[J]. Eur J Surg Oncol, 2019, 45(7): 1146-1151.
[21] Karakawa R, Yoshimatsu H, Nakatsuka K, et al. Supermicrosurgical anastomosis training using chick embryos within the egg-in-cube system[J]. Plast Reconstr Surg, 2024, 153(4): 741e-745e.
[22] Pion E, Zucal I, Troebs J, et al. New, innovative, three-dimensional in vivo model for high-level microsurgical and supermicrosurgical training: a replacement for animal models[J]. Plast Reconstr Surg, 2022, 150(2): 432-436.
[23] Escandón JM, Ciudad P, Poore SO, et al. Experimental models and practical simulators for supermicrosurgery: an updated systematic review and meta-analysis[J]. Plast Reconstr Surg, 2023, 151(5): 775e-803e.
[24] Hayashi K, Hattori Y, Chia DSY, et al. Fingertip replantation: surgical technique, tips, and tricks[J]. Plast Reconstr Surg, 2024, 153(1): 168-171.
[25] Zheng Y, Zhang S, Li J, et al. Overlapping lockup lymphaticovenous anastomosis: a useful addition to supermicrosurgery[J]. J Vasc Surg Venous Lymphat Disord, 2024, 12(1): 101684.
[26] Yang JC, Hayashi A, Visconti G, et al. Impact of re-trograde anastomosis during supermicrosurgical lymphaticovenous anastomosis for cancer-related lower limb lymphedema: a retrospective cohort propensity-score-matched outcome analysis[J]. Int J Surg, 2022, 104: 106720.
[27] Pons G, Tang JB. Major changes in lymphatic microsurgery and microvascular surgery in past 20 years[J]. Clin Plast Surg, 2020, 47(4): 679-683.
[28] Lu Q, Liu K, Zhang W, et al. End-to-end vascular anastomosis using a novel magnetic compression device in rabbits: a preliminary study[J]. Sci Rep, 2020, 10(1): 5981.
[29] Klima U, Falk V, Maringka M, et al. Magnetic vascular coupling for distal anastomosis in coronary artery bypass grafting: a multicenter trial[J]. J Thorac Cardiovasc Surg, 2003, 126(5): 1568-1574.
[30] Mallela DP, Bose S, Shallal CC, et al. A systematic review of sutureless vascular anastomosis technologies[J]. Semin Vasc Surg, 2021, 34(4): 247-259.
[31] Senthil-Kumar P, Ng-Glazier JH, Randolph MA, et al. An intraluminal stent facilitates light-activated vascular anastomosis[J]. J Trauma Acute Care Surg, 2017, 83(1 ): S43-S49.
[32] Nakadate R, Omori S, Ikeda T, et al. Improving the strength of sutureless laser-assisted vessel repair u-sing preloaded longitudinal compression on tissue edge[J]. Lasers Surg Med, 2017, 49(5): 533-538.
[33] Leclère FM, Schoofs M, Vogt P, et al. 1950-nm dio-de laser-assisted microanastomoses (LAMA): an innovative surgical tool for hand surgery emergencies[J]. Lasers Med Sci, 2015, 30(4): 1269-1273.
[34] Stecher D, van Slochteren FJ, Hoefer IE, et al. The nonocclusive laser-assisted coronary anastomotic connector in an off-pump porcine bypass model[J]. J Thorac Cardiovasc Surg, 2014, 147(4): 1390-1397.e2.
[35] Stecher D, Bronkers G, Noest JO, et al. Evaluation of a novel laser-assisted coronary anastomotic connector-the trinity clip-in a porcine off-pump bypass model[J]. J Vis Exp, 2014(93): e52127.
[36] Wang WM, Huang L, Gao X, et al. Use of a microvascular coupler device for end-to-side venous anastomosis in oral and maxillofacial reconstruction[J]. Int J Oral Maxillofac Surg, 2018, 47(10): 1263-1267.
[37] Maruccia M, Fatigato G, Elia R, et al. Microvascular coupler device versus hand-sewn venous anastomosis: a systematic review of the literature and data meta-analysis[J]. Microsurgery, 2020, 40(5): 608-617.
[38] Senthil Murugan M, Ravi P, Mohammed Afradh K, et al. Comparison of the efficacy of venous coupler and hand-sewn anastomosis in maxillofacial reconstruction using microvascular fibula free flaps: a prospective randomized controlled trial[J]. Int J Oral Maxillofac Surg, 2018, 47(7): 854-857.
[39] Kopjar T. Vascular anastomosis device to facilitate aortic arch vessel reconstruction[J]. Eur J Cardiothorac Surg, 2022, 62(2): ezac225.
[40] Shafi BM, Wheatley GH, Kerendi F, et al. Six-month preclinical results of novel vascular anastomosis device intended to facilitate open aortic and arch vessel reconstruction[J]. Eur J Cardiothorac Surg, 2022, 62(2): ezac146.
[41] Head LK, McKay DR. Economic comparison of hand-sutured and coupler-assisted microvascular an-astomoses[J]. J Reconstr Microsurg, 2018, 34(1): 71-76.
[42] Kenngott HG, Müller-Stich BP, Reiter MA, et al. Robotic suturing: technique and benefit in advanced laparoscopic surgery[J]. Minim Invasive Ther Allied Technol, 2008, 17(3): 160-167.
[43] Park JS, Choi GS, Park SY, et al. Randomized clinical trial of robot-assisted versus standard laparoscopic right colectomy[J]. Br J Surg, 2012, 99(9): 1219-1226.
[44] Innocenti M, Malzone G, Menichini G. First-in-human free flap tissue reconstruction using a dedicated microsurgical robotic platform[J]. Plast Reconstr Surg, 2023, 151(5): 1078-1082.
[45] van Mulken TJM, Schols RM, Scharmga AMJ, et al. First-in-human robotic supermicrosurgery using a dedicated microsurgical robot for treating breast cancer-related lymphedema: a randomized pilot trial[J]. Nat Commun, 2020, 11(1): 757.
[46] 王延琳, 饶亚兰, 熊文翔, 等. 对国外已上市人纤维蛋白原临床试验的分析[J]. 中国新药杂志, 2022, 31(1): 27-32.
Wang YL, Rao YL, Xiong WX, et al. Analysis on the clinical trials of human fibrinogen on the market abroad[J]. Chin J New Drugs, 2022, 31(1): 27-32.
[47] Liang X, Liu S, Fang Z, et al. Prevention of vascular anastomotic stenosis with 2-octylcyanoacrylate[J]. J Craniofac Surg, 2019, 30(1): 74-80.
[48] Weiner J, Widman S, Golek Z, et al. Role of bovine serum albumin-glutaraldehyde glue in the formation of anastomatic pseudoaneurysms[J]. J Card Surg, 2011, 26(1): 76-81.
[49] Murdock MH, Chang JT, Luketich SK, et al. Cytocompatibility and mechanical properties of surgical sealants for cardiovascular applications[J]. J Thorac Cardiovasc Surg, 2019, 157(1): 176-183.
[50] Slezak P, Klang A, Ferguson J, et al. Tissue reactions to polyethylene glycol and glutaraldehyde-based surgical sealants in a rabbit aorta model[J]. J Biomater Appl, 2020, 34(9): 1330-1340.
[51] Natour E, Suedkamp M, Dapunt OE. Assessment of the effect on blood loss and transfusion requirements when adding a polyethylene glycol sealant to the anastomotic closure of aortic procedures: a case-control analysis of 102 patients undergoing Bentall procedures[J]. J Cardiothorac Surg, 2012, 7: 105.
[52] Qassemyar Q, Michel G, Gianfermi M, et al. Sutureless venous microanastomosis using thermosensitive poloxamer and cyanoacrylate: experimental study on a rat model[J]. J Plast Reconstr Aesthet Surg, 2022, 75(1): 433-438.
[53] Muñoz Taboada G, Dosta P, Edelman ER, et al. Sprayable hydrogel for instant sealing of vascular anastomosis[J]. Adv Mater, 2022, 34(43): e2203087.
[54] Modabber A, Winnand P, Goloborodko E, et al. Biodegradation and immunological parameters of polyurethane-based tissue adhesive in arterial microvascular anastomoses-a long-term in vivo study[J]. Macromol Biosci, 2022, 22(4): e2100451.
[55] Heitzer M, Ooms M, Katz MS, et al. Evaluation of the long-term results of vascular anastomosis using polyurethane adhesive and shape-memory stent in the rat carotid artery model[J]. Microsurgery, 2022, 42(5): 480-489.
[56] Yuno T, Nakade Y, Iino K, et al. Motor-evoked potential monitoring with multi-train electrical stimulation during thoracoabdominal aortic aneurysm surgery: a case report[J]. Cureus, 2024, 16(2): e53872.
[57] Chen D, Zhang W, Wei L. Ex vivo resection, vessel reconstruction and liver autotransplantation for cholangiocarcinoma: a report of two cases[J]. Asian J Surg, 2024, 47(6): 2625-2631.
[58] Zohar B, Debbi L, Machour M, et al. A micro-channel array in a tissue engineered vessel graft guides vascular morphogenesis for anastomosis with self-assembled vascular networks[J]. Acta Biomater, 2023, 163: 182-193.
[59] Chandra P, Atala A. Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications[J]. Clin Sci, 2019, 133(9): 1115-1135.
[1] 汤芝伟,高莺. 靶向牙髓显微外科技术的应用与进展[J]. 国际口腔医学杂志, 2022, 49(6): 678-683.
[2] 章杲威,李春洁. 机器人手术在头颈、耳鼻喉区域的发展现状[J]. 国际口腔医学杂志, 2021, 48(5): 614-620.
[3] 董青山1综述 毛天球2审校. 骨组织工程血管化技术的构建思路[J]. 国际口腔医学杂志, 2008, 35(3): 321-321~324.
[4] 王巧琳,梁景平. 内窥镜与显微镜在牙体病治疗中的应用[J]. 国际口腔医学杂志, 2001, 28(03): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!