国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (1): 133-140.doi: 10.7518/gjkq.2025012

• 综述 • 上一篇    

牙科树脂渗透陶瓷复合材料制备的研究进展

胡雨欣1(),吕广超1,马骁1,曹姗姗1,李秋兰2,赵克2,张新平1()   

  1. 1.华南理工大学材料科学与工程学院金属材料科学与工程系 广州 510640
    2.中山大学光华口腔医学院·附属口腔医院修复科 广东省口腔医学重点实验室 广州 510055
  • 收稿日期:2024-06-11 修回日期:2024-09-14 出版日期:2025-01-01 发布日期:2025-01-11
  • 通讯作者: 张新平
  • 作者简介:胡雨欣,学士,Email:mshuyuxin@mail.scut.edu.cn
  • 基金资助:
    2022年国家重点研发计划项目(2022YFC2410100)

Research progress on the fabrication of polymer-infiltrated-ceramic-network composite for dental restorations

Yuxin Hu1(),Guangchao Lü1,Xiao Ma1,Shanshan Cao1,Qiulan Li2,Ke Zhao2,Xinping Zhang1()   

  1. 1.Dept. of Metallic Materials Science and Engineering, School of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
    2.Dept. of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2024-06-11 Revised:2024-09-14 Online:2025-01-01 Published:2025-01-11
  • Contact: Xinping Zhang
  • Supported by:
    2022 National Key Research and Development Program of China(2022YFC2410100)

摘要:

树脂渗透陶瓷(PICN)复合材料是一种由树脂和陶瓷2种互穿网状相构成的新型牙科修复材料,具有优良的天然牙仿生性能和易加工性,特别适用于基于椅旁计算机辅助设计和制造技术的快速牙体缺失和缺损的修复,正逐渐成为研究和应用的热点。PICN的力学性能和美学性能等可通过成分设计、优化制备工艺和表面改性等来调控。本文综述了PICN材料制备的研究进展,详述了多孔陶瓷制备、树脂渗透和固化工艺等方面研究现状,展望了未来发展趋势和研究重点。

关键词: 牙科材料, 树脂渗透陶瓷, 制备工艺, 力学性能, 美学性能

Abstract:

Polymer-infiltrated-ceramic-network (PICN) composite is a new type of dental restorative material with an interpenetrating network of resin and ceramic phases. It has excellent natural tooth biomimetic properties and good machinability, making it suitable for rapid tooth repair and restoration through chairside computer-aided design/manufactu-ring. Thus, PICN composite has become a hotspot of research and application. Their comprehensive properties (including mechanical and aesthetic properties) can be controlled through appropriate component design, optimized preparation, and surface modification. This work performs a comprehensive review of the research progress on the fabrication of PICN composites, focusing on the state-of-the-art fabrication of porous ceramics, resin infiltration, and curing and providing a fresh perspective on the future development and research emphasis in this field.

Key words: dental material, polymer-infiltrated-ceramic-network, fabrication, mechanical property, aesthetic pro-perty

中图分类号: 

  • R783.1

表 1

天然牙齿和商业PICN材料力学性能对比"

材料弯曲强度/MPa弹性模量/GPa维氏硬度/GPa断裂韧性/(MPa·m1/2
牙本质213~28016.00~20.300.6~0.92.20~3.10
釉质60~9048.00~105.503.0~5.30.60~1.50
PICN124~16027.26~37.951.7~2.51.09~1.50

表 2

不同方法制备多孔陶瓷的比较"

方法复杂性孔隙率孔隙分布可控性
部分烧结法简单较低均匀
添加造孔剂法简单较低不均匀
颗粒堆积法简单不均匀
冷冻干燥法复杂均匀
3D打印法简单均匀
1 Elfakhri F, Alkahtani R, Li CC, et al. Influence of filler characteristics on the performance of dental composites: a comprehensive review[J]. Ceram Int, 2022, 48(19): 27280-27294.
2 Nguyen JF, Ruse D, Phan AC, et al. High-temperature-pressure polymerized resin-infiltrated ceramic networks[J]. J Dent Res, 2014, 93(1): 62-67.
3 Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network mate- rials[J]. Dent Mater, 2013, 29(4): 419-426.
4 Petrini M, Ferrante M, Su B. Fabrication and characterization of biomimetic ceramic/polymer compo-site materials for dental restoration[J]. Dent Mater, 2013, 29(4): 375-381.
5 Algharaibeh S, Wan HB, Al-Fodeh R, et al. Fabrication and mechanical properties of biomimetic nacre-like ceramic/polymer composites for chairside CAD/CAM dental restorations[J]. Dent Mater, 2022, 38(1): 121-132.
6 Sodergren B, Wang J, Zhang Y, et al. Fracture resistance of ceramic-polymer hybrid materials using microscopic finite element analysis and experimental validation[J]. Comput Methods Biomech Biomed Engin, 2022, 25(16): 1785-1795.
7 He LH, Purton D, Swain M. A novel polymer infiltrated ceramic for dental simulation[J]. J Mater Sci Mater Med, 2011, 22(7): 1639-1643.
8 He LH, Swain M. A novel polymer infiltrated ceramic dental material[J]. Dent Mater, 2011, 27(6): 527-534.
9 Kang LZ, Zhou Y, Lan JL, et al. Effect of resin composition on performance of polymer-infiltrated feldspar-network composites for dental restoration[J]. Dent Mater J, 2020, 39(5): 900-908.
10 Ioannidis A, Gil A, Hämmerle CH, et al. Effect of thermomechanical loading on the cementation interface of implant-supported CAD/CAM crowns luted to titanium abutments[J]. Int J Prosthodont, 2020, 33(6): 656-662.
11 Ruiz-López J, Espinar C, Lucena C, et al. Effect of thickness on color and translucency of a multi-color polymer-infiltrated ceramic-network material[J]. J Esthet Restor Dent, 2023, 35(2): 381-389.
12 Dentistry-ceramic materials: [S/OL]. [2015-06-01]. .
13 Yano HT, Ikeda H, Nagamatsu Y, et al. Correlation between microstructure of CAD/CAM composites and the silanization effect on adhesive bonding[J]. J Mech Behav Biomed Mater, 2020, 101: 103441.
14 Ikeda H, Kawajiri Y, Sodeyama MK, et al. A SiO2/pHEMA-based polymer-infiltrated ceramic network composite for dental restorative materials[J]. J Compos Sci, 2022, 6(1): 17.
15 Cui BC, Zhang RR, Sun FB, et al. Mechanical and biocompatible properties of polymer-infiltrated-ceramic-network materials for dental restoration[J]. J Adv Ceram, 2020, 9(1): 123-128.
16 Cui BC, Li J, Wang HN, et al. Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration[J]. J Dent, 2017, 62: 91-97.
17 Kul E, Matori KA, Karadeniz S, et al. Mechanical properties of polymer-infiltrated fluorapatite glass ceramics fabricated from clam shell and soda lime silicate glass[J]. Mater Plast, 2023, 60(1): 128-136.
18 Swain MV, Coldea A, Bilkhair A, et al. Interpenetrating network ceramic-resin composite dental restorative materials[J]. Dent Mater, 2016, 32(1): 34-42.
19 Wang YH, Luo SH, Dou YX, et al. Preparation and mechanical properties of polymer infiltrated feldspar ceramic for dental restoration materials[J]. J Polym Res, 2022, 29(11): 464.
20 Wang HN, Cui BC, Li J, et al. Mechanical properties and biocompatibility of polymer infiltrated so-dium aluminum silicate restorative composites[J]. J Adv Ceram, 2017, 6(1): 73-79.
21 Li WY, Sun J. Effects of ceramic density and sinte-ring temperature on the mechanical properties of a novel polymer-infiltrated ceramic-network zirconia dental restorative (filling) material[J]. Med Sci Mo-nit, 2018, 24: 3068-3076.
22 Biggemann J, Hoffmann P, Hristov I, et al. Injection molding of 3-3 hydroxyapatite composites[J]. Materials, 2020, 13(8): 1907.
23 Eldafrawy M, Nguyen JF, Mainjot AK, et al. A functionally graded PICN material for biomimetic CAD-CAM blocks[J]. J Dent Res, 2018, 97(12): 1324-1330.
24 Sodeyama MK, Ikeda H, Nagamatsu Y, et al. Printa-ble PICN composite mechanically compatible with human teeth[J]. J Dent Res, 2021, 100(13): 1475-1481.
25 Hodásová Ľ, Alemán C, Del Valle LJ, et al. 3D-printed polymer-infiltrated ceramic network with biocompatible adhesive to potentiate dental implant applications[J]. Materials (Basel), 2021, 14(19): 5513.
26 Zhang F, Yang F, Lin D, et al. Parameter study of three-dimensional printing graphene oxide based on directional freezing[J]. J Manuf Sci Eng, 2017, 139(3): 031016.
27 Oh WS, Shen C, Alegre B, et al. Wetting characteristic of ceramic to water and adhesive resin[J]. J Prosthet Dent, 2002, 88(6): 616-621.
28 赵铱民. 口腔修复学[M]. 8版. 北京: 人民卫生出版社, 2020: 64-65.
Zhao YM. Prosthodontics[M]. 8th ed. Beijing: People’s Medical Publishing House, 2020: 64-65.
29 Eldafrawy M, Greimers L, Bekaert S, et al. Silane influence on bonding to CAD-CAM composites: an interfacial fracture toughness study[J]. Dent Mater, 2019, 35(9): 1279-1290.
30 Steier V, Koplin C, Kailer A, et al. Investigation of the adhesion promoter distribution in porous ceramic precursors[J]. ISRN Mech Eng, 2011, 2011: 304129.
31 Kawajiri Y, Ikeda H, Nagamatsu Y, et al. PICN nanocomposite as dental CAD/CAM block comparable to human tooth in terms of hardness and fle-xural modulus[J]. Materials, 2021, 14(5): 1182.
32 de Almeida CM, Piva E, Duarte CG, et al. Physico-mechanical characterization and fracture reliability of dental resin composites for enamel restoration[J]. J Braz Soc Mech Sci Eng, 2019, 41(10): 398.
33 Grazioli G, Cuevas-Suarez CE, Mederos M, et al. Evaluation of irradiance and radiant exposure on the polymerization and mechanical properties of a resin composite[J]. Braz Oral Res, 2022, 36: e082.
34 Kim D, Shim JS, Lee DS, et al. Effects of post-cu-ring time on the mechanical and color properties of three-dimensional printed crown and bridge mate-rials[J]. Polymers, 2020, 12(11): 2762.
35 Li WD, Wang K, Wang ZZ, et al. Optimal resin monomer ratios for light-cured dental resins[J]. Heliyon, 2022, 8(9): e10554.
36 Schneider TR, Hakami-Tafreshi R, Tomasino-Perez A, et al. Effects of dental composite resin monomers on dental pulp cells[J]. Dent Mater J, 2019, 38(4): 579-583.
37 Barutcigil K, Dündar A, Batmaz SG, et al. Do resin-based composite CAD/CAM blocks release monomers[J]. Clin Oral Investig, 2021, 25(1): 329-336.
38 Lopes-Rocha L, Ribeiro-Gonçalves L, Henriques B, et al. An integrative review on the toxicity of Bisphenol A (BPA) released from resin composites used in dentistry[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(11): 1942-1952.
39 Hatipoğlu Ö, Turumtay EA, Saygın AG, et al. Eva-luation of color stability of experimental dental composite resins prepared from bis-EFMA, a novel monomer system[J]. J Photopol Sci Technol, 2021, 34(3): 297-305.
40 Maryamnegari SM, Nateghi MR, Mohebat R. Effect of sintering and infiltration conditions on nanoscale dual network SiO2/polymethyl metacrylate compo-sites mimicking human enamel[J]. J Dent, 2022, 126: 104311.
41 Lovell LG, Newman SM, Bowman CN. The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dime-thacrylate dental resins[J]. J Dent Res, 1999, 78(8): 1469-1476.
42 Sideridou I, Tserki V, Papanastasiou G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins[J]. Biomaterials, 2002, 23(8): 1819-1829.
43 Rey L, Duchet J, Galy J, et al. Structural heteroge-neities and mechanical properties of vinyl/dimethacrylate networks synthesized by thermal free radical polymerisation[J]. Polymer, 2002, 43(16): 4375-4384.
44 Li K, Kou HM, Rao JC, et al. Fabrication of enamel-like structure on polymer-infiltrated zirconia cera-mics[J]. Dent Mater, 2021, 37(4): e245-e255.
45 Phan AC, Tang ML, Nguyen JF, et al. High-temperature high-pressure polymerized urethane dimetha-crylate-mechanical properties and monomer release[J]. Dent Mater, 2014, 30(3): 350-356.
46 Nguyen JF, Migonney V, Ruse ND, et al. Properties of experimental urethane dimethacrylate-based dental resin composite blocks obtained via thermo-polymerization under high pressure[J]. Dent Mater, 2013, 29(5): 535-541.
47 Mainjot AK, Dupont NM, Oudkerk JC, et al. From artisanal to CAD-CAM blocks: state of the art of indirect composites[J]. J Dent Res, 2016, 95(5): 487-495.
48 Phan AC, Béhin P, Stoclet G, et al. Optimum pressure for the high-pressure polymerization of urethane dimethacrylate[J]. Dent Mater, 2015, 31(4): 406-412.
49 Béhin P, Stoclet G, Ruse ND, et al. Dynamic mechanical analysis of high pressure polymerized urethane dimethacrylate[J]. Dent Mater, 2014, 30(7): 728-734.
50 Pomès B, Behin P, Jordan L, et al. Influence of polymerization pressure and post-cure treatment on conversion degree and viscoelastic properties of polymer infiltrated ceramic network[J]. J Mech Behav Biomed Mater, 2021, 115: 104286.
[1] 王路明,曹潇,仵琳悦,李蕴聪,雷波,牛林. 掺锌生物活性玻璃纳米颗粒对复合树脂力学性能影响的实验研究[J]. 国际口腔医学杂志, 2022, 49(4): 404-411.
[2] 冯瑾,吴红崑. 抗菌牙科材料在根面龋治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 475-480.
[3] 曾越, 夏海斌, 王敏. 纳米材料改良义齿基托力学性能及抗菌性能的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 455-458.
[4] 吴幸晨 朱亚琴. 自调节根管锉的特性和临床应用评价[J]. 国际口腔医学杂志, 2013, 40(6): 764-768.
[5] 刘晶莹综述 刘晓明审校. 不同牙体预备对瓷贴面力学性能和临床修复效果的影响[J]. 国际口腔医学杂志, 2012, 39(3): 404-407.
[6] 张洁综述 李长义审校. 牙科材料耐磨损性能的影响因素[J]. 国际口腔医学杂志, 2009, 36(6): 723-725.
[7] 赵文权,王慧明. 纳米羟磷灰石在口腔医学领域的应用[J]. 国际口腔医学杂志, 2008, 35(S1): -.
[8] 高秀芳综述 张连云, 李长义审校. 牙科材料磨损的机制及其评价方法[J]. 国际口腔医学杂志, 2008, 35(1): 83-84.
[9] 王志刚,张富强,. 纤维桩的力学性能和粘接[J]. 国际口腔医学杂志, 2007, 34(03): 223-225.
[10] 孙蕾,张富强. 氧化锆应用于全瓷修复的研究进展[J]. 国际口腔医学杂志, 2005, 32(02): 145-147.
[11] 刘云松. 新型牙本质粘接剂的发展方向[J]. 国际口腔医学杂志, 2004, 31(S1): -.
[12] 赵克,巢永烈. 牙科陶瓷发展的回顾[J]. 国际口腔医学杂志, 2004, 31(05): 391-393.
[13] 朱镇. 修复体边缘微漏的影响因素及控制办法[J]. 国际口腔医学杂志, 2002, 29(03): -.
[14] 孙俊. 陶瓷的显微结构与力学性能[J]. 国际口腔医学杂志, 1999, 26(03): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!