国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (6): 677-686.doi: 10.7518/gjkq.2024079
• 口腔正畸专栏 • 上一篇
Jiazhen Jiang(),Xiaoge Jiang,Song Chen()
摘要:
颧牙槽嵴区皮质骨密度高、骨量大,植入该区的微种植钉具有良好的初期稳定性,能够承担较大的正畸力,实现牙列整体移动。此外,颧牙槽嵴区的微种植钉离磨牙根尖较远,牙根损伤风险小,牙齿移动不受干扰。相对于根间牙槽骨,颧牙槽嵴区是一个更理想的微种植钉植入位置,在临床中的应用越来越广。为提高该部位微种植钉植入的成功率,本文从解剖因素、临床因素和患者因素三方面对颧牙槽嵴区微种植钉成功植入的影响因素进行综述,以期提高临床医生对颧牙槽嵴区微种植钉植入的认识,进而提高该支抗的治疗效果。
中图分类号:
1 | Umalkar SS, Jadhav VV, Paul P, et al. Modern anchorage systems in orthodontics[J]. Cureus, 2022, 14(11): e31476. |
2 | Kravitz ND, Kusnoto B. Risks and complications of orthodontic miniscrews[J]. Am J Orthod Dentofacial Orthop, 2007, 131(4 ): S43-S51. |
3 | Sreenivasagan S, Subramanian AK, Chae JM. Comparison of treatment effects during en-masse retraction of upper anterior teeth placed using mini-implants placed at infrazygomatic crest and interradicular sites: a randomized controlled trial[J]. Orthod Craniofac Res, 2024, 27(1): 33-43. |
4 | Roberts WE, Chang CH, Chen J, et al. Integrating skeletal anchorage into fixed and aligner biomecha-nics[J]. J World Fed Orthod, 2022, 11(4): 95-106. |
5 | Lima A Jr, Domingos RG, Cunha Ribeiro AN, et al. Safe sites for orthodontic miniscrew insertion in the infrazygomatic crest area in different facial types: a tomographic study[J]. Am J Orthod Dentofacial Orthop, 2022, 161(1): 37-45. |
6 | Farnsworth D, Rossouw PE, Ceen RF, et al. Cortical bone thickness at common miniscrew implant placement sites[J]. Am J Orthod Dentofacial Orthop, 2011, 139(4): 495-503. |
7 | Chugh T, Ganeshkar SV, Revankar AV, et al. Quantitative assessment of interradicular bone density in the maxilla and mandible: implications in clinical orthodontics[J]. Prog Orthod, 2013, 14(1): 38. |
8 | Wani MA, Khattri S, Thapa A, et al. Maxillary total arch distalization with infra-zygomatic crest (IZC) bone screws for the correction of skeletal class Ⅱ malocclusion: a case report[J]. IP Indian J Orthod Dentofac Res, 2023, 9(2): 127-132. |
9 | Almeida MR. Biomechanics of extra-alveolar mini-implants[J]. Dental Press J Orthod, 2019, 24(4): 93-109. |
10 | Rosa WGN, de Almeida-Pedrin RR, Oltramari PVP, et al. Total arch maxillary distalization using infrazygomatic crest miniscrews in the treatment of class Ⅱ malocclusion: a prospective study[J]. Angle Orthod, 2023, 93(1): 41-48. |
11 | Shaikh A, Jamdar AF, Galgali SA, et al. Efficacy of infrazygomatic crest implants for full-arch distalization of maxilla and reduction of gummy smile in class Ⅱ malocclusion[J]. J Contemp Dent Pract, 2021, 22(10): 1135-1143. |
12 | Reddy SBVR, Jonnalagadda VNS. Mini-implant assisted gummy smile and deep bite correction[J]. Contemp Clin Dent, 2021, 12(2): 199-204. |
13 | Gopal H, Das SK, Barik AK, et al. Success rate of infrazygomatic crest mini-implants used for en-masse retraction of maxillary anterior teeth in first premolar extraction cases: a three-dimensional comparative prospective clinical trial between adolescents and young adults[J]. J World Fed Orthod, 2023, 12(5): 197-206. |
14 | De Almeida MR, De Almeida RR, Nanda R. Biomechanics of extra-alveolar mini-implant use in the infrazygomatic crest area for asymmetrical correction of classⅡsubdivision malocclusion[J]. APOS Trends Orthod, 2018, 8: 110-118. |
15 | 孟耀, 刘进, 郭鑫, 等. 骨种植钉前牵引对骨性Ⅲ类错患者软硬组织侧貌的影响[J]. 华西口腔医学杂志, 2012, 30(3): 278-282. |
Meng Y, Liu J, Guo X, et al. Soft and hard tissue changes after maxillary protraction with skeletal anchorage implant in treatment of class Ⅲ malocclusion[J]. West China J Stomatol, 2012, 30(3): 278-282. | |
16 | Kravitz ND, Kusnoto B, Tsay PT, et al. Intrusion of overerupted upper first molar using two orthodontic miniscrews. A case report[J]. Angle Orthod, 2007, 77(5): 915-922. |
17 | de Almeida MR. Dentofacial asymmetry: non-surgical orthodontic treatment using extra-alveolar miniscrews[J]. Semin Orthod, 2022, 28(3): 195-211. |
18 | Farahani M, Farimani RM, Eskandarloo F. Treatment for severe class Ⅱ open bite using a bonded hyrax expander, IZC mini-implants, and MEAW technique in an adolescent patient[J]. Case Rep Dent, 2023, 2023: 8833818. |
19 | Chang CH, Lin LY, Roberts WE. Orthodontic bone screws: a quick update and its promising future[J]. Orthod Craniofac Res, 2021, 24(): 75-82. |
20 | Benaissa A, Merdji A, Bendjaballah MZ, et al. Stress influence on orthodontic system components under simulated treatment loadings[J]. Comput Methods Programs Biomed, 2020, 195: 105569. |
21 | Erbay Elibol FK, Oflaz E, Buğra E, et al. Effect of cortical bone thickness and density on pullout strength of mini-implants: an experimental study[J]. Am J Orthod Dentofacial Orthop, 2020, 157(2): 178-185. |
22 | Pan CY, Liu PH, Tseng YC, et al. Effects of cortical bone thickness and trabecular bone density on primary stability of orthodontic mini-implants[J]. J Dent Sci, 2019, 14(4): 383-388. |
23 | Merheb J, van Assche N, Coucke W, et al. Relationship between cortical bone thickness or computeri-zed tomography-derived bone density values and implant stability[J]. Clin Oral Implants Res, 2010, 21(6): 612-617. |
24 | Shah AH, Behrents RG, Kim KB, et al. Effects of screw and host factors on insertion torque and pullout strength[J]. Angle Orthod, 2012, 82(4): 603-610. |
25 | Motoyoshi M, Inaba M, Ono A, et al. The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone[J]. Int J Oral Maxillofac Surg, 2009, 38(1): 13-18. |
26 | Arvind Tr P, Jain RK. Computed tomography assessment of maxillary bone density for orthodontic mini-implant placement with respect to vertical growth patterns[J]. J Orthod, 2021, 48(4): 392-402. |
27 | Chen YC, Tu YK, Tsai YJ, et al. Assessment of thermal necrosis risk regions for different bone qualities as a function of drilling parameters[J]. Comput Methods Programs Biomed, 2018, 162: 253-261. |
28 | Vilani GN, Ruellas AC, Mattos CT, et al. Influence of cortical thickness on the stability of mini-implants with microthreads[J]. Braz Oral Res, 2015, 29: S1806-S83242015000100220. |
29 | Salomó-Coll O, Auriol-Muerza B, Lozano-Carrascal N, et al. Influence of bone density, drill diameter, drilling speed, and irrigation on temperature changes during implant osteotomies: an in vitro study[J]. Clin Oral Investig, 2021, 25(3): 1047-1053. |
30 | Wilmes B, Drescher D. Impact of bone quality, implant type, and implantation site preparation on insertion torques of mini-implants used for orthodontic anchorage[J]. Int J Oral Maxillofac Surg, 2011, 40(7): 697-703. |
31 | Miyawaki S, Koyama I, Inoue M, et al. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage[J]. Am J Orthod Dentofacial Orthop, 2003, 124(4): 373-378. |
32 | Gill G, Shashidhar K, Kuttappa MN, et al. Failure rates and factors associated with infrazygomatic crestal orthodontic implants-a prospective study[J]. J Oral Biol Craniofac Res, 2023, 13(2): 283-289. |
33 | Frost HM. Wolff’s law and bone’s structural adaptations to mechanical usage: an overview for clinicians[J]. Angle Orthod, 1994, 64(3): 175-188. |
34 | 王玉俏, 迟敬文, 刘轶凡, 等. 成人不同垂直骨面型颧牙槽嵴区骨皮质密度分析[J]. 上海口腔医学, 2019, 28(6): 652-656. |
Wang YQ, Chi JW, Liu YF, et al. Analysis of cortical density in zygomatic alveolar ridge of different vertical facial types[J]. Shanghai J Stomatol, 2019, 28(6): 652-656. | |
35 | Veli I, Uysal T, Baysal A, et al. Buccal cortical bone thickness at miniscrew placement sites in patients with different vertical skeletal patterns[J]. J Orofac Orthop, 2014, 75(6): 417-429. |
36 | 张惠超, 刘佳, 曹宇, 等. 不同垂直骨面型骨性Ⅰ类错成人患者颧牙槽嵴区骨质特征分析及其临床意义[J]. 吉林大学学报(医学版), 2023, 49(5): 1310-1317. |
Zhang HC, Liu J, Cao Y, et al. Analysis on bone characteristic in infrazygomatic crest region in adult patients with different vertical skeletal patterns of skeletal classⅠmalocclusion and its clinical significance[J]. J Jilin Univ (Med Ed), 2023, 49(5): 1310-1317. | |
37 | Murugesan A, Jain RK. A 3D comparison of dimension of infrazygomatic crest region in different vertical skeletal patterns: a retrospective study[J]. Int Orthod, 2020, 18(4): 770-775. |
38 | 仲伟洁, 叶俊杰, 王华, 等. 不同垂直骨面型成年患者颧牙槽嵴有效骨量的CBCT研究[J]. 口腔医学, 2021, 41(12): 1077-1080, 1093. |
Zhong WJ, Ye JJ, Wang H, et al. CBCT analysis of bone thickness of infrazygomatic crest in adults with different vertical skeletal patterns[J]. Stomato-logy, 2021, 41(12): 1077-1080, 1093. | |
39 | Vargas EOA, Lopes de Lima R, Nojima LI. Mandi-bular buccal shelf and infrazygomatic crest thicknesses in patients with different vertical facial heights[J]. Am J Orthod Dentofacial Orthop, 2020, 158(3): 349-356. |
40 | Matias M, Flores-Mir C, Almeida MR, et al. Miniscrew insertion sites of infrazygomatic crest and mandibular buccal shelf in different vertical craniofacial patterns: a cone-beam computed tomography study[J]. Korean J Orthod, 2021, 51(6): 387-396. |
41 | Chang CH, Lin JH, Roberts WE. Success of infrazygomatic crest bone screws: patient age, insertion angle, sinus penetration, and terminal insertion torque[J]. Am J Orthod Dentofacial Orthop, 2022, 161(6): 783-790. |
42 | Santos AR, Castellucci M, Crusoé-Rebello IM, et al. Assessing bone thickness in the infrazygomatic crest area aiming the orthodontic miniplates positioning: a tomographic study[J]. Dental Press J Orthod, 2017, 22(4): 70-76. |
43 | Laursen MG, Melsen B, Cattaneo PM. An evaluation of insertion sites for mini-implants: a micro-CT study of human autopsy material[J]. Angle Orthod, 2013, 83(2): 222-229. |
44 | Jia XT, Chen X, Huang XF. Influence of orthodontic mini-implant penetration of the maxillary sinus in the infrazygomatic crest region[J]. Am J Orthod Dentofacial Orthop, 2018, 153(5): 656-661. |
45 | Motoyoshi M, Sanuki-Suzuki R, Uchida Y, et al. Maxillary sinus perforation by orthodontic anchor screws[J]. J Oral Sci, 2015, 57(2): 95-100. |
46 | Scuderi AJ, Harnsberger HR, Boyer RS. Pneumatization of the paranasal sinuses: normal features of importance to the accurate interpretation of CT scans and MR images[J]. AJR Am J Roentgenol, 1993, 160(5): 1101-1104. |
47 | Biafora M, Bertazzoni G, Trimarchi M. Maxillary sinusitis caused by dental implants extending into the maxillary sinus and the nasal cavities[J]. J Prosthodont, 2014, 23(3): 227-231. |
48 | Park MJ, Park HI, Ahn KM, et al. Features of odontogenic sinusitis associated with dental implants[J]. Laryngoscope, 2023, 133(2): 237-243. |
49 | Liou EJW, Chen PH, Wang YC, et al. A computed tomographic image study on the thickness of the infrazygomatic crest of the maxilla and its clinical implications for miniscrew insertion[J]. Am J Orthod Dentofacial Orthop, 2007, 131(3): 352-356. |
50 | Arango E, Plaza-Ruíz SP, Barrero I, et al. Age diffe-rences in relation to bone thickness and length of the zygomatic process of the maxilla, infrazygoma-tic crest, and buccal shelf area[J]. Am J Orthod Dentofacial Orthop, 2022, 161(4): 510-518.e1. |
51 | Tavares A, Montanha-Andrade K, Cury PR, et al. Tomographic assessment of infrazygomatic crest bone depth for extra-alveolar miniscrew insertion in subjects with different vertical and sagittal skeletal patterns[J]. Orthod Craniofac Res, 2022, 25(1): 49-54. |
52 | Gibas-Stanek M, Ślusarska J, Urzędowski M, et al. Quantitative evaluation of the infrazygomatic crest thickness in Polish subjects: a cone-beam computed tomography study[J]. Appl Sci, 2023, 13(15): 8744. |
53 | Du BR, Zhu JY, Li LT, et al. Bone depth and thickness of different infrazygomatic crest miniscrew insertion paths between the first and second maxillary molars for distal tooth movement: a 3-dimensional assessment[J]. Am J Orthod Dentofacial Orthop, 2021, 160(1): 113-123. |
54 | Al Amri MS, Sabban HM, Alsaggaf DH, et al. Anatomical consideration for optimal position of ortho-dontic miniscrews in the maxilla: a CBCT appraisal[J]. Ann Saudi Med, 2020, 40(4): 330-337. |
55 | Paul P, Mathur AK, Chitra P. Cone beam computed tomographic comparison of infrazygomatic crest bone thickness in patients with different facial types[J]. Orthod Waves, 2020, 79(2/3): 99-104. |
56 | Murugesan A, Sivakumar A. Comparison of bone thickness in infrazygomatic crest area at various miniscrew insertion angles in Dravidian population-a cone beam computed tomography study[J]. Int Orthod, 2020, 18(1): 105-114. |
57 | He YX, Liu JN, Huang R, et al. Clinical analysis of successful insertion of orthodontic mini-implants in infrazygomatic crest[J]. BMC Oral Health, 2023, 23(1): 348. |
58 | Stasiak M, Adamska P. Should cone-beam compu-ted tomography be performed prior to orthodontic miniscrew placement in the infrazygomatic crest area?-a systematic review[J]. Biomedicines, 2023, 11(9): 2389. |
59 | Kuroda S, Yamada K, Deguchi T, et al. Root pro-ximity is a major factor for screw failure in orthodontic anchorage[J]. Am J Orthod Dentofacial Orthop, 2007, 131(4 ): S68-S73. |
60 | Suzuki M, Deguchi T, Watanabe H, et al. Evaluation of optimal length and insertion torque for miniscrews[J]. Am J Orthod Dentofacial Orthop, 2013, 144(2): 251-259. |
61 | Lee YK, Kim JW, Baek SH, et al. Root and bone response to the proximity of a mini-implant under orthodontic loading[J]. Angle Orthod, 2010, 80(3): 452-458. |
62 | Liou EJW, Pai BCJ, Lin JCY. Do miniscrews remain stationary under orthodontic forces[J]. Am J Orthod Dentofacial Orthop, 2004, 126(1): 42-47. |
63 | Jeong JW, Kim JW, Lee NK, et al. Analysis of time to failure of orthodontic mini-implants after insertion or loading[J]. J Korean Assoc Oral Maxillofac Surg, 2015, 41(5): 240-245. |
64 | Zhang LK, Zhao ZH, Li Y, et al. Osseointegration of orthodontic micro-screws after immediate and early loading[J]. Angle Orthod, 2010, 80(2): 354-360. |
65 | Garg KK, Gupta M. Assessment of stability of ortho-dontic mini-implants under orthodontic loading: a computed tomography study[J]. Indian J Dent Res, 2015, 26(3): 237-243. |
66 | Ramazanzadeh BA, Fatemi K, Dehghani M, et al. Effect of healing time on bone-implant contact of orthodontic micro-implants: a histologic study[J]. ISRN Dent, 2014, 2014: 179037. |
67 | Chang CH, Lin JS, Roberts WE. Failure rates for stainless steel versus titanium alloy infrazygomatic crest bone screws: a single-center, randomized double-blind clinical trial[J]. Angle Orthod, 2019, 89(1): 40-46. |
68 | Garfinkle JS, Cunningham LL Jr, Beeman CS, et al. Evaluation of orthodontic mini-implant anchorage in premolar extraction therapy in adolescents[J]. Am J Orthod Dentofacial Orthop, 2008, 133(5): 642-653. |
69 | Papageorgiou SN, Zogakis IP, Papadopoulos MA. Failure rates and associated risk factors of orthodontic miniscrew implants: a meta-analysis[J]. Am J Orthod Dentofacial Orthop, 2012, 142(5): 577-595.e7. |
70 | Büchter A, Wiechmann D, Koerdt S, et al. Load-related implant reaction of mini-implants used for ortho-dontic anchorage[J]. Clin Oral Implants Res, 2005, 16(4): 473-479. |
71 | Catharino PC, Dominguez GC, Pinto Ddos S Jr, et al. Histologic, histomorphometric, and radiographic monitoring of bone healing around in-office-sterili-zed orthodontic mini-implants with or without immediate load: study in rabbit tibiae[J]. Int J Oral Maxillofac Implants, 2014, 29(2): 321-330. |
72 | Arslan Çarpar K, Sezen Erhamza T. Comparison of zygoma plates and infrazygomatic crest miniscrews used open bite treatment: a 3-dimensional finite element study[J]. Am J Orthod Dentofacial Orthop, 2022, 161(5): e466-e474. |
73 | Raghav P, Reddy CM. Clinical applicability of IZC’s in orthodontics-a review[J]. J Contemp Orthod, 2023, 6(4): 172-177. |
74 | Morarend C, Qian F, Marshall SD, et al. Effect of screw diameter on orthodontic skeletal anchorage[J]. Am J Orthod Dentofacial Orthop, 2009, 136(2): 224-229. |
75 | Watanabe K, Mitchell B, Sakamaki T, et al. Mechani-cal stability of orthodontic miniscrew depends on a thread shape[J]. J Dent Sci, 2022, 17(3): 1244-1252. |
76 | Chang JZ, Chen YJ, Tung YY, et al. Effects of thread depth, taper shape, and taper length on the mechanical properties of mini-implants[J]. Am J Orthod Dentofacial Orthop, 2012, 141(3): 279-288. |
77 | 武玉海. 影响不锈钢种植钉稳定性的相关因素研究[J]. 广东牙病防治, 2013, 21(8): 444-446. |
Wu YH. Study on related factors affecting the stabi-lity of stainless steel mini-implants[J]. J Dent Prev Treat, 2013, 21(8): 444-446. | |
78 | Ling CL, Shen YQ, Zhang X, et al. A cone beam computed tomography analysis of bone volume varia-tions of extra-alveolar region based on sex, age, vertical and sagittal facial patterns[J]. J Craniofac Surg, 2023, 34(7): e660-e664. |
79 | Song QX, Jiang F, Zhou ML, et al. Optimal sites and angles for the insertion of orthodontic mini-implants at infrazygomatic crest: a cone beam compu-ted tomography (CBCT)-based study[J]. Am J Transl Res, 2022, 14(12): 8893-8902. |
80 | 雷菲菲, 梁芮, 张咏梅, 等. 不锈钢微螺钉种植体支抗的稳定性研究[J]. 中华口腔正畸学杂志, 2015, 22(2): 65-68. |
Lei FF, Liang R, Zhang YM, et al. Study on stability of stainless-steel micro-screw anchorage[J]. Chin J Orthod, 2015, 22(2): 65-68. | |
81 | Moon CH, Lee DG, Lee HS, et al. Factors associa-ted with the success rate of orthodontic miniscrews placed in the upper and lower posterior buccal region[J]. Angle Orthod, 2008, 78(1): 101-106. |
82 | Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as ortho-dontic anchorage[J]. Am J Orthod Dentofacial Orthop, 2006, 130(1): 18-25. |
83 | Chen YJ, Chang HH, Lin HY, et al. Stability of miniplates and miniscrews used for orthodontic anchorage: experience with 492 temporary anchorage devices[J]. Clin Oral Implants Res, 2008, 19(11): 1188-1196. |
84 | Sharma P, Valiathan A, Sivakumar A. Success rate of microimplants in a university orthodontic clinic[J]. ISRN Surg, 2011, 2011: 982671. |
85 | Kuroda S, Sugawara Y, Deguchi T, et al. Clinical use of miniscrew implants as orthodontic ancho-rage: success rates and postoperative discomfort[J]. Am J Orthod Dentofacial Orthop, 2007, 131(1): 9-15. |
86 | Huang R, He YX, Jia XT, et al. Investigation of perio-dontal status and bacterial composition aroundmini-implants[J]. Am J Orthod Dentofacial Orthop, 2023, 164(1): 116-122. |
87 | Alharbi F, Almuzian M, Bearn D. Miniscrews fai-lure rate in orthodontics: systematic review and meta-analysis[J]. Eur J Orthod, 2018, 40(5): 519-530. |
88 | Bayat E, Bauss O. Effect of smoking on the failure rates of orthodontic miniscrews[J]. J Orofac Orthop, 2010, 71(2): 117-124. |
89 | Kungsadalpipob K, Supanimitkul K, Manopattanasoontorn S, et al. The lack of keratinized mucosa is associated with poor peri-implant tissue health: a cross-sectional study[J]. Int J Implant Dent, 2020, 6(1): 28. |
90 | Liu JQ, Zhang CF, Shan ZY. Application of artificial intelligence in orthodontics: current state and future perspectives[J]. Healthcare, 2023, 11(20): 2760. |
[1] | 徐一尘,鲁勇. 腭裂术后瘘修复的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 624-629. |
[2] | 王太萍,石兴莲,李喆臻,刘梅,姜健红. 口腔癌患者心理因素及干预现状分析[J]. 国际口腔医学杂志, 2023, 50(2): 203-209. |
[3] | 尹茂运,张祎,胡敏. 正畸拔牙矫治对上气道影响的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 607-613. |
[4] | 吴兴胜,黄迪,石连水. 上颌窦过度气化及其影响因素的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 204-211. |
[5] | 薛伶俐,李雅冬. 经首次根治性手术治疗口腔鳞状细胞癌患者的生存相关影响因素分析[J]. 国际口腔医学杂志, 2020, 47(2): 166-174. |
[6] | 刘玲玲,刘树泰. 上颌腭侧软组织厚度的测量方法及影响因素[J]. 国际口腔医学杂志, 2019, 46(2): 234-237. |
[7] | 赵金,赖光云,汪俊. 全身麻醉下儿童口腔疾病治疗家长接受度现况的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 739-744. |
[8] | 徐晶, 张晓蓉. 正畸治疗对上气道形态影响的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 544-449. |
[9] | 陈李彤,王勇,吕培军. 口腔医疗服务利用水平的影响因素[J]. 国际口腔医学杂志, 2016, 43(6): 668-671. |
[10] | 霍欢 殷家悦 艾红军. 树脂粘接剂在全瓷修复中的应用进展[J]. 国际口腔医学杂志, 2016, 43(5): 554-559. |
[11] | 葛艳萍,陈西文,朱智敏. 影响可摘局部义齿修复满意度的相关因素[J]. 国际口腔医学杂志, 2015, 42(2): 194-198. |
[12] | 陆轩,陈小冬,邢文忠,李振春. 全瓷贴面修复的临床效果评估[J]. 国际口腔医学杂志, 2015, 42(2): 170-172. |
[13] | 程旭 石冰. Abbe瓣术式发展、手术效果评估方法及影响因素[J]. 国际口腔医学杂志, 2015, 42(1): 44-47. |
[14] | 章筱悦 陈振琦. 唇腭裂患者的牙周健康状况及其影响因素[J]. 国际口腔医学杂志, 2014, 41(4): 463-467. |
[15] | 谭咏梅 招少萍 闫文娟 张海兰 吕文杰 周丽娟. 一次根管治疗术与两次根管治疗术术后短期临床疗效的比较[J]. 国际口腔医学杂志, 2014, 41(3): 277-280. |
|