Int J Stomatol ›› 2022, Vol. 49 ›› Issue (5): 600-606.doi: 10.7518/gjkq.2022086

• Reviews • Previous Articles     Next Articles

Research progress on the gene family with sequence similarity 83 member H related to autosomal dominant hypocalcified amelogenesis imperfecta and its mutation

Guo Simin1(),Chen Ting1,2()   

  1. 1.School of Stomatology, Southern Me-dical University, Guangzhou 510515, China
    2.Dept. of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
  • Received:2021-11-25 Revised:2022-03-02 Online:2022-09-01 Published:2022-09-16
  • Contact: Ting Chen;
  • Supported by:
    National Natural Science Foundation of China(81800950)


Autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI) is a genetic disorder characterized by abnormal enamel formation. The enamel matrix is formed normally but without apparent mineralization. The ADHCAI has evident clinical and genetic heterogeneity. The affected tooth’s enamel thickness is normal however, the surface hardness is reduced, thus affecting the tooth’s function and aesthetics. Family with sequence similarity 83 member H (FAM83H) is a member of family with sequence similarity 83. It is widely expressed in a variety of human tissues and cells including ameloblasts, odontoblasts, and alveolar bone. It encodes an intracellular protein that is associated with keratin cytoskeleton and desmosomes, playing a role in intracellular molecular transport, cytoskeletal network regulation, and enamel formation. Various mutations have been identified in the FAM83H gene that leads to ADHCAI in different populations. In recent years, several studies explored the relationship between mutations in FAM83H and the occurrence and development of ADHCAI from multiple perspectives, such as vesicle trafficking and cytoskeletal organization. In this review, we will focus on the research progress on the gene FAM83H related to ADHCAI and its mutation.

Key words: autosomal dominant hypocalcified amelogenesis imperfecta, family with sequence similarity 83 member H, truncation mutation

CLC Number: 

  • R 780.2


Tab 1

Researched FAM83 mutation associated with ADHCAI"









7c.1330C>Tp.Q444*土耳其*******Hart 等[11](2009)
22c.2029 C>Tp.Q677*中国*++柔软黄棕色-++*
29c.1147G > Tp.E383X中国*+++*深棕色+**
1 Kim YJ, Lee Y, Kasimoglu Y, et al. Recessive mutations in ACP4 cause amelogenesis imperfecta[J]. J Dent Res, 2022, 101(1): 37-45.
2 Mendoza G, Pemberton TJ, Lee K, et al. A new locus for autosomal dominant amelogenesis imperfecta on chromosome 8q24.3[J]. Hum Genet, 2007, 120(5): 653-662.
3 Wang SK, Hu Y, Yang J, et al. Fam83h null mice support a neomorphic mechanism for human ADHCAI[J]. Mol Genet Genomic Med, 2016, 4(1): 46-67.
4 Okada J, Sunaga N, Yamada E, et al. FAM83G is a novel inducer of apoptosis[J]. Molecules, 2020, 25(12): 2810.
5 Nowwarote N, Theerapanon T, Osathanon T, et al. Amelogenesis imperfecta: a novel FAM83H mutation and characteristics of periodontal ligament cells[J]. Oral Dis, 2018, 24(8): 1522-1531.
6 Kweon YS, Lee KE, Ko J, et al. Effects of Fam83h overexpression on enamel and dentine formation[J]. Arch Oral Biol, 2013, 58(9): 1148-1154.
7 Kim KM, Park SH, Bae JS, et al. FAM83H is involved in the progression of hepatocellular carcinoma and is regulated by MYC[J]. Sci Rep, 2017, 7: 3274.
8 Kim JW, Lee SK, Lee ZH, et al. FAM83H mutations in families with autosomal-dominant hypocalcified amelogenesis imperfecta[J]. Am J Hum Genet, 2008, 82(2): 489-494.
9 Urzúa B, Martínez C, Ortega-Pinto A, et al. Novel missense mutation of the FAM83H gene causes retention of amelogenin and a mild clinical phenotype of hypocalcified enamel[J]. Arch Oral Biol, 2015, 60(9): 1356-1367.
10 Lee SK, Hu JCC, Bartlett JD, et al. Mutational spectrum of FAM83H: the C-terminal portion is required for tooth enamel calcification[J]. Hum Mutat, 2008, 29(8): E95-E99.
11 Hart PS, Becerik S, Cogulu D, et al. Novel FAM83H mutations in Turkish families with autosomal dominant hypocalcified amelogenesis imperfecta[J]. Clin Genet, 2009, 75(4): 401-404.
12 Hyun HK, Lee SK, Lee KE, et al. Identification of a novel FAM83Hmutation and microhardness of an affected molar in autosomal dominant hypocalcified amelogenesis imperfecta[J]. Int Endod J, 2009, 42(11): 1039-1043.
13 Wright JT, Frazier-Bowers S, Simmons D, et al. Phenotypic variation in FAM83H-associated amelogenesis imperfecta[J]. J Dent Res, 2009, 88(4): 356-360.
14 El-Sayed W, Shore RC, Parry DA, et al. Ultrastructural analyses of deciduous teeth affected by hypocalcified amelogenesis imperfecta from a family with a novel Y458X FAM83H nonsense mutation[J]. Cells Tissues Organs, 2010, 191(3): 235-239.
15 Haubek D, Gjørup H, Jensen LG, et al. Limited phenotypic variation of hypocalcified amelogenesis imperfecta in a Danish five-generation family with a novel FAM83H nonsense mutation[J]. Int J Paediatr Dent, 2011, 21(6): 407-412.
16 Song YL, Wang CN, Zhang CZ, et al. Molecular characterization of amelogenesis imperfecta in Chinese patients[J]. Cells Tissues Organs, 2012, 196(3): 271-279.
17 Kantaputra PN, Intachai W, Auychai P. All enamel is not created equal: supports from a novel FAM83H mutation[J]. Am J Med Genet A, 2016, 170A(1): 273-276.
18 Wang X, Wang WJ, Qin M, et al. Novel FAM83H mutations in patients with amelogenesis imperfecta[J]. Sci Rep, 2017, 7: 6075.
19 Yu SL, Quan JK, Wang XZ, et al. A novel FAM83H mutation in one Chinese family with autosomal-dominant hypocalcification amelogenesis imperfecta[J]. Mutagenesis, 2018, 33(4): 333-340.
20 Wang SK, Zhang H, Hu CY, et al. FAM83H and autosomal dominant hypocalcified amelogenesis imperfecta[J]. J Dent Res, 2021, 100(3): 293-301.
21 丁玉梅. 遗传性牙釉质发育不全相关基因Fam83h突变的鉴定及亚细胞定位的研究[D]. 武汉: 华中科技大学, 2009.
Ding YM. The identification of amelogenesis imperfecta-causing Fam83h mutation and study of the subcellular localization of Fam83h[D]. Wuhan: Huazhong University of Science and Technology, 2009.
22 Huang WS, Yang M, Wang CN, et al. Evolutionary analysis of FAM83H in vertebrates[J]. PLoS One, 2017, 12(7): e0180360.
23 Zheng YC, Lu T, Chen JF, et al. The gain-of-function FAM83H mutation caused hypocalcification amelogenesis imperfecta in a Chinese family[J]. Clin Oral Invest, 2021, 25(5): 2915-2923.
24 Yang X, Yamazaki H, Yamakoshi Y, et al. Trafficking and secretion of keratin 75 by ameloblasts in vivo [J]. J Biol Chem, 2019, 294(48): 18475-18487.
25 Duverger O, Carlson JC, Karacz CM, et al. Correction: genetic variants in pachyonychia congenita-associated keratins increase susceptibility to tooth decay[J]. PLoS Genet, 2019, 15(6): e1008230.
26 Kuga T, Sasaki M, Mikami T, et al. FAM83H and casein kinase Ⅰ regulate the organization of the keratin cytoskeleton and formation of desmosomes[J]. Sci Rep, 2016, 6: 26557.
27 Fulcher LJ, Bozatzi P, Tachie-Menson T, et al. The DUF1669 domain of FAM83 family proteins anchor casein kinase 1 isoforms[J]. Sci Signal, 2018, 11(531): eaao2341.
28 Kuga T, Kume H, Kawasaki N, et al. A novel mechanism of keratin cytoskeleton organization through casein kinase Ⅰα and FAM83H in colorectal cancer[J]. J Cell Sci, 2013, 126(Pt 20): 4721-4731.
29 Tachie-Menson T, Gázquez-Gutiérrez A, Fulcher LJ, et al. Characterisation of the biochemical and cellular roles of native and pathogenic amelogenesis imperfecta mutants of FAM83H[J]. Cell Signal, 2020, 72: 109632.
30 杨梅. Fam83h突变对成釉细胞矿化的影响及机制研究[D]. 武汉: 武汉大学, 2018.
Yang M. Study on the mechanism and effects of Fam83h mutations on the mineralization in ameloblasts[D]. Wuhan: Wuhan University, 2018.
31 Wang SK, Hu YY, Smith CE, et al. The enamel phenotype in homozygous Fam83h truncation mice[J]. Mol Genet Genomic Med, 2019, 7(6): e724.
32 Kuga T, Kume H, Adachi J, et al. Casein kinase 1 is recruited to nuclear speckles by FAM83H and SON[J]. Sci Rep, 2016, 6: 34472.
33 Ding Y, Estrella MRP, Hu YY, et al. Fam83h is associated with intracellular vesicles and ADHCAI[J]. J Dent Res, 2009, 88(11): 991-996.
34 Peotter J, Kasberg W, Pustova I, et al. COPⅡ-mediated trafficking at the ER/ERGIC interface[J]. Traffic, 2019, 20(7): 491-503.
35 Nasseri S, Nikkho B, Parsa S, et al. Generation of Fam83h knockout mice by CRISPR/Cas9-mediated gene engineering[J]. J Cell Biochem, 2019, 120(7): 11033-11043.
36 Nollet M, Santucci-Darmanin S, Breuil V, et al. Autophagy in osteoblasts is involved in mineralization and bone homeostasis[J]. Autophagy, 2014, 10(11): 1965-1977.
37 Lee MJ, Lee SK, Lee KE, et al. Expression patterns of the Fam83h gene during murine tooth development[J]. Arch Oral Biol, 2009, 54(9): 846-850.
38 Jia J, Yang F, Yang M, et al. P38/JNK signaling pathway mediates the fluoride-induced down-regulation of Fam83h[J]. Biochem Biophys Res Commun, 2016, 471(3): 386-390.
39 Yang M, Huang WS, Yang F, et al. Fam83h mutation inhibits the mineralization in ameloblasts by activating Wnt/β-catenin signaling pathway[J]. Biochem Biophys Res Commun, 2018, 501(1): 206-211.
40 Nowwarote N, Osathanon T, Kanjana K, et al. Decreased osteogenic activity and mineralization of alveolar bone cells from a patient with amelogenesis imperfecta and FAM83H 1261G>T mutation[J]. Genes Dis, 2019, 6(4): 391-397.
41 Roma M, Hegde P, Durga Nandhini M, et al. Management guidelines for amelogenesis imperfecta:a case report and review of the literature[J]. J Med Case Rep, 2021, 15: 67.
[1] Li Shanshan,Yang Fang. Research progress on the relationship between Streptococcus mutans and Candida albicans in caries [J]. Int J Stomatol, 2022, 49(4): 392-396.
[2] Zha Yunchen,Zhang Jiajia,Kong Weidong.. Research progress on the etiology of primary failure of eruption [J]. Int J Stomatol, 2022, 49(4): 386-391.
[3] Zhou Shuangshuang, Zheng Xin, Zhou Xuedong, Xu Xin. Relationship of alkali production by plaque biofilm and dental caries [J]. Inter J Stomatol, 2016, 43(5): 573-577.
[4] Sun Fei1, Zhang Jiangang2, Xiao Shuiqing2. Structural function and pathogenic mechanism of cytolethal distending toxin and outer membrane proteins [J]. Inter J Stomatol, 2016, 43(5): 565-568.
[5] Xu Xinyue1, Li Xuejian1, Ren Gaotong1, Jiao Kai2,3, Niu Lina3,4. Function of immunocyte-derived catecholamine in physiological metabolism and inflammatory diseases [J]. Inter J Stomatol, 2016, 43(5): 599-604.
[6] Huang Hui, Zhang Qiong, Zou Jing. Research progress on oral microbiota of early childhood caries [J]. Inter J Stomatol, 2016, 43(3): 295-297.
[7] Xu Peng, Chen Chuanjun. The progress of relationship between primary trigeminal neuralgia and herpes simplex virus infection [J]. Inter J Stomatol, 2016, 43(2): 220-222.
[8] Zheng Sainan, Jiang Li, Li Wei. Research progress on oral bacterial adhesion mechanism [J]. Inter J Stomatol, 2016, 43(2): 223-227.
[9] Yu Pei, Xue Jing, Li Wei.. Research strategies of microbial metabolomics and its application in human microbes [J]. Inter J Stomatol, 2015, 42(6): 703-709.
[10] Ou Meizhen, Ling Junqi. Multiple effect of polyamines on biofilm [J]. Inter J Stomatol, 2015, 42(3): 361-363.
[11] Zhang Ruirui, Sun Keqin. Pathogenicity, detection, and elimination of Enterococcus faecalis in post-treatment endodontic disease [J]. Inter J Stomatol, 2015, 42(3): 357-360.
[12] Zhou Zheng, Zhao Changming, Jiao Kai, Wang Meiqing. Regulatory role of sympathetic nervous system–adrenergic receptor on bone remodeling [J]. Inter J Stomatol, 2015, 42(3): 348-351.
[13] Cheng Yuan, Yin Yanli, Zhao Lei. Research progress on Filifactor alocis [J]. Inter J Stomatol, 2014, 41(5): 593-597.
[14] Geng Fengxue, Pan Yaping.. Interactions among bacteria of different colonization processes within biofilms and the model [J]. Inter J Stomatol, 2014, 41(4): 431-435.
[15] Xiang Yan, Du Minquan. Bifidobacterium and related research progress on the relationship between the bacteria and dental caries [J]. Inter J Stomatol, 2013, 40(6): 820-822.
Full text



No Suggested Reading articles found!