Int J Stomatol ›› 2022, Vol. 49 ›› Issue (2): 182-189.doi: 10.7518/gjkq.2022031

• Reviews • Previous Articles     Next Articles

Principle and application progress of real-time mandibular motion recording system

Li Ruyi(),Luo Feng,Wan Qianbing()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prostho-dontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-06-16 Revised:2021-11-23 Online:2022-03-01 Published:2022-03-15
  • Contact: Qianbing Wan E-mail:2216845404@qq.com;champion@scu.edu.cn
  • Supported by:
    Clinical Research Fund of Young Scientists for Ceramic Materials of Chinese Stomatological Association(CSA-P2019-01)

Abstract:

The traditional method of jaw relationship transfer only considers the static occlusal relationship and has difficulty in simulating the real-time chewing movement of patients in vitro. The real-time mandibular motion recording system records and reconstructs personalized mandibular motion in real time using a mandibular motion recorder and a computer-aided design software. Compared with traditional mechanical articulator, it has convenient operation, high accuracy, and long-term data storage. Besides, under the influence of 5th generation wireless systems, the real-time mandibular motion recording system further demonstrates its unique value and promotes the construction of virtual patients and telemedicine development.

Key words: dynamic occlusion, virtual articulator, computer aided design and computer aided manufacturing, digital dentistry


TrendMD: 

Fig 1

Application process of occlusal data in denture digital design software"

Tab 1

Summary and comparison of different systems (including facebow and mechanical articulator)"

系统名称 类别 特征与特色
Girrbach面弓、全可调??架 经验面弓、机械??架 1)要求(同一系统中的)面弓与??架联合使用,操作步骤较多;
2)咬合关系信息记录较为受限,较难实现记录咬合运动中每一时刻的咬合关系;
3)可供直观的在实体上检查咬合关系/调磨修复体;但是不能直接将咬合关系数据转移至牙科CAD软件中(需要通过扫描才能将其转移至CAD软件中)
运动面弓(kinematic face bow)
(由 McCollum于1921年研制成功,后不断有学者对其描记方法进行改进)
机械式运动面弓 1)设备组件复杂;
2)依靠描记针在夹板上画出髁突/切点/其他点的运动轨迹(每次只能画1个截面的运动轨迹)
SICAT系统 超声感应 1)可获取患者咬合运动过程中每一时间点的咬合关系;
2)可实现咬合运动数据与CT、口内扫描等数据叠加;但是对于下颌牙冠过短、覆??过大以及牙列缺失患者的咬合关系记录仍存在困难;
3)头戴上部面弓,可抵消患者头颅的动度;同时不受环境光的干扰
3 Shape口内扫描仪(TRIOS Patient Speci-fic Motion应用程序) 光电感应 1)通过口内扫描仪对牙列扫描完成后,直接扫描记录得到咬合关系;
2)受限于口内环境及扫描头的成像范围,导致对咬合信息记录的范围及准确度方面较难得到保证
下颌运动描记仪(mandibular kinesiograph,MKG)(由 Jankelson于1975年研制) 磁电式 该系统类似于超声感应式,能从矢状面、冠状面和水平面观测下颌中切牙切点运动轨迹,但容易受外界微磁场或电磁场环境干扰
[1] Bando E, Nishigawa K, Nakano M, et al. Current status of researches on jaw movement and occlusion for clinical application[J]. Jpn Dent Sci Rev, 2009, 45(2): 83-97.
doi: 10.1016/j.jdsr.2009.04.001
[2] Li JY, Sommer C, Wang HL, et al. Creating a virtual patient for completely edentulous computer-aided implant surgery: a dental technique[J]. J Prosthet Dent, 2021, 125(4): 564-568.
doi: 10.1016/j.prosdent.2020.02.026
[3] Joda T, Gallucci GO, Wismeijer D, et al. Augmen-ted and virtual reality in dental medicine: a systema-tic review[J]. Comput Biol Med, 2019, 108: 93-100.
doi: S0010-4825(19)30085-X pmid: 31003184
[4] Harris BT, Montero D, Grant GT, et al. Creation of a 3-dimensional virtual dental patient for computer-guided surgery and CAD-CAM interim complete removable and fixed dental prostheses: a clinical report[J]. J Prosthet Dent, 2017, 117(2): 197-204.
doi: S0022-3913(16)30281-5 pmid: 27666493
[5] 刘峰, 师晓蕊. 面弓𬌗架应用基本技术[M]. 北京: 人民卫生出版社, 2018: 58-63.
Liu F, Shi XR. The clinical application of facebow and articulator[M]. Beijing: People’s Medical Publishing House, 2018: 58-63.
[6] 冯海兰, 周崇阳, 李平. 下颌绞链运动轴点稳定性及位置的探讨[J]. 中华口腔医学杂志, 1997, 32(3): 139-142.
pmid: 10680521
Feng HL, Zhou CY, Li P. Evaluation of reprodu-cibilty of the hinge axis and it’s positional relation to condyles[J]. Chin J Stomatol, 1997, 32(3): 139-142.
pmid: 10680521
[7] Utz KH, Duvenbeck H, Oettershagen K. Variation of the terminal hinge axial position in different methods of registration[J]. Schweiz Monatsschr Zahn-med, 1990, 100(4): 412-419.
[8] Lotzmann U. Considerations of precision and consistance of mandibular transverse hinge axis[J]. ZWR, 1990, 99(5): 372-379.
pmid: 2220112
[9] Lotzmann U. Results of incorrectly positioned hinge axis on axiographic tracings of mandibular movement[J]. ZWR, 1990, 99(6): 445-448.
pmid: 2220115
[10] Kurbad A. Three-dimensional registration of real jaw motion tracking data and its therapeutic consequences[J]. Int J Comput Dent, 2018, 21(1): 57-70.
[11] Aslanidou K, Kau CH, Vlachos C, et al. The fabrication of a customized occlusal splint based on the merging of dynamic jaw tracking records, cone beam computed tomography, and CAD-CAM digital impression[J]. J Orthod Sci, 2017, 6(3): 104-109.
doi: 10.4103/jos.JOS_61_16 pmid: 28717635
[12] Hanssen N, Ruge S, Kordass B. SICAT function: ana-tomical real-dynamic articulation by merging cone beam computed tomography and jaw motion trac-king data[J]. Int J Comput Dent, 2014, 17(1): 65-74.
pmid: 24791466
[13] Kang DW, Mongini F, Rossi F, et al. A system for the study of jaw movements[J]. Cranio, 1993, 11(1): 63-67.
pmid: 8358809
[14] Fang JJ, Kuo TH. Modelling of mandibular movement[J]. Comput Biol Med, 2008, 38(11/12): 1152-1162.
doi: 10.1016/j.compbiomed.2008.09.001
[15] Hayashi T, Kurokawa M, Miyakawa M, et al. A high-resolution line sensor-based photostereometric system for measuring jaw movements in 6 degrees of freedom[J]. Front Med Biol Eng, 1994, 6(3): 171-186.
pmid: 7727316
[16] Kwon JH, Im S, Chang M, et al. A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner[J]. J Prosthodont Res, 2019, 63(1): 115-119.
doi: 10.1016/j.jpor.2018.05.001
[17] Jankelson B, Swain CW, Crane PF, et al. Kinesiometric instrumentation: a new technology[J]. J Am Dent Assoc, 1975, 90(4): 834-840.
pmid: 1055153
[18] Wessberg GA, Washburn MC, Epker BN, et al. Evaluation of mandibular rest position in subjects with diverse dentofacial morphology[J]. J Prosthet Dent, 1982, 48(4): 451-460.
pmid: 6957600
[19] Chang WS, Romberg E, Driscoll CF, et al. An in vitro evaluation of the reliability and validity of an electronic pantograph by testing with five different articulators[J]. J Prosthet Dent, 2004, 92(1): 83-89.
doi: 10.1016/j.prosdent.2004.04.011
[20] Bernhardt O, Küppers N, Rosin M, et al. Comparative tests of arbitrary and kinematic transverse horizontal axis recordings of mandibular movements[J]. J Prosthet Dent, 2003, 89(2): 175-179.
pmid: 12616238
[21] 易新竹. 𬌗学[M]. 3版. 北京: 人民卫生出版社, 2017: 29-31, 77-88.
Yi XZ. Occlusion[M]. 3rd ed. Beijing: People’s Medical Publishing House, 2017: 29-31, 77-88.
[22] Linsen SS, Reich RH, Teschke M. Mandibular kinematics in patients with alloplastic total temporomandibular joint replacement: a prospective study[J]. J Oral Maxillofac Surg, 2012, 70(9): 2057-2064.
doi: 10.1016/j.joms.2012.05.026
[23] da Cunha DV, Degan VV, Vedovello Filho M, et al. Real-time three-dimensional jaw tracking in temporomandibular disorders[J]. J Oral Rehabil, 2017, 44(8): 580-588.
doi: 10.1111/joor.12521 pmid: 28498502
[24] 王晶, 陈俊鹏, 王洋, 等. 数字化下颌运动记录及咀嚼肌肌电图在下颌骨肿瘤患者口颌功能评价中的应用[J]. 北京大学学报(医学版), 2019, 51(3): 571-578.
Wang J, Chen JP, Wang Y, et al. Application of digital mandibular movement record and masticatory muscle electromyography in the evaluation of stomatognathic function in patients with mandibular tumor[J]. J Peking Univ (Heal Sci), 2019, 51(3): 571-578.
[25] Gurbanov V, Bas B, Öz AA. Evaluation of stresses on temporomandibular joint in the use of Class Ⅱ and Ⅲ orthodontic elastics: a three-dimensional finite element study[J]. J Oral Maxillofac Surg, 2020, 78(5): 705-716.
doi: 10.1016/j.joms.2019.11.022
[26] Aslanidou K, Xie RB, Christou T, et al. Evaluation of temporomandibular joint function after orthognathic surgery using a jaw tracker[J]. J Orthod, 2020, 47(2): 140-148.
doi: 10.1177/1465312520908277 pmid: 32114874
[27] He SS, Kau CH, Liao LN, et al. The use of a dyna-mic real-time jaw tracking device and cone beam computed tomography simulation[J]. Ann Maxillofac Surg, 2016, 6(1): 113-119.
doi: 10.4103/2231-0746.186142
[28] Quast A, Santander P, Witt D, et al. Traditional face-bow transfer versus three-dimensional virtual reconstruction in orthognathic surgery[J]. Int J Oral Ma-xillofac Surg, 2019, 48(3): 347-354.
[29] Ritto FG, Schmitt ARM, Pimentel T, et al. Comparison of the accuracy of maxillary position between conventional model surgery and virtual surgical planning[J]. Int J Oral Maxillofac Surg, 2018, 47(2): 160-166.
doi: 10.1016/j.ijom.2017.08.012
[30] 刘志明, 付东杰, 张周文, 等. 不良修复体与颞下颌关节紊乱病的相关性研究[J]. 检验医学与临床, 2015, 12(19): 2882-2883, 2886.
Liu ZM, Fu DJ, Zhang ZW, et al. Correlation between improper dental prosthetic restoration and temporomandibular disorders[J]. Lab Med Clin, 2015, 12(19): 2882-2883, 2886.
[31] Yohn K. The face bow is irrelevant for making prostheses and planning orthognathic surgery[J]. J Am Dent Assoc, 2016, 147(6): 421-426.
doi: 10.1016/j.adaj.2015.12.011
[32] Farias-Neto A, Dias AH, de Miranda BF, et al. Face-bow transfer in prosthodontics: a systematic review of the literature[J]. J Oral Rehabil, 2013, 40(9): 686-692.
doi: 10.1111/joor.12081 pmid: 23829310
[33] Laird MF, Ross CF, O’Higgins P. Jaw kinematics and mandibular morphology in humans[J]. J Hum Evol, 2020, 139: 102639.
doi: S0047-2484(18)30359-2 pmid: 31841671
[1] Xue Du,Fang Qu,Weicai Liu. Establishment of a three-dimensional virtual dental patient and its application in esthetic restoration [J]. Inter J Stomatol, 2018, 45(6): 695-702.
[2] Zhan Danting, Zhang Fan, Zheng Lige. Application and research progress on virtual articulator [J]. Inter J Stomatol, 2018, 45(2): 228-232.
[3] Wan Qianbing. Several problems on monolithic zirconia crowns [J]. Inter J Stomatol, 2018, 45(1): 9-13.
[4] Chen Chunxiu, Wen Xuejin.. Nursing cooperation for computer aided design and computer aided manufacturing of zirconia ceramic restoration system [J]. Inter J Stomatol, 2014, 41(2): 140-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .