国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (6): 677-685.doi: 10.7518/gjkq.2020073

• 综述 • 上一篇    下一篇

颌面骨再生领域3D打印技术及应用材料的研究进展

张心驰1(),吴炜2()   

  1. 1.空军军医大学基础医学院 西安 710032
    2.军事口腔医学国家重点实验室,口腔疾病国家临床医学研究中心,陕西省口腔疾病临床医学研究中心,空军军医大学口腔医院颌面外科 西安 710032
  • 收稿日期:2019-11-13 修回日期:2020-05-19 出版日期:2020-11-01 发布日期:2020-11-06
  • 通讯作者: 吴炜
  • 作者简介:张心驰,学士,Email: 784788489@qq.com
  • 基金资助:
    国家自然科学基金(81771040)

Research progress on 3D printing technology and biomaterials for bone reconstruction in maxillofacial regions

Zhang Xinchi1(),Wu Wei2()   

  1. 1. Basic Medical College of Air Force Medical University of PLA, Xi’an 710032, China
    2. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shanxi Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, Hospital of Stomatology, Air Force Medical University of PLA, Xi’an 710032, China
  • Received:2019-11-13 Revised:2020-05-19 Online:2020-11-01 Published:2020-11-06
  • Contact: Wei Wu
  • Supported by:
    National Natural Science Foundation of China(81771040)

摘要:

颌面骨缺损的再生修复是外科临床亟待解决的问题,目前主要采用的方法有自体移植、异体移植以及人工合成替代物修补的方法。3D打印技术凭借其快速成型、设计精准、个性化等优点,在替代物制造与加工、治疗方案设计与预演、术前指导等方面发挥着重要的作用。通过采用不同材料、不同制造技术获得具有良好机械性能和生物相容性的模具、种植体、移植物,可以进行骨骼和软组织的修补及诱导再生。随着3D打印技术的日益发展,可选择的生物材料种类越来越多,组织工程支架的研究也成为研发的热点。本文就近年来国内外应用于颌面部骨缺损的3D打印材料的研究及发展状况进行总结,并展望3D打印技术的发展前景。

关键词: 3D打印, 骨材料, 颌面部缺损, 修复重建

Abstract:

Maxillofacial bone defect reconstruction remains a critical challenge in clinical surgery. With the advantages of rapid prototyping, accurate design and personalisation, 3D printing technology plays an important role in the manufacturing, processing, treatment program design rehearsal and preoperative fabrication of substitutes. Bone replacement with good mechanical properties and biocompatibility could be acquired using different materials and manufacturing techniques for maxillofacial reconstruction. 3D printing technology allows the use of additional biological materials and promotes the scaffolding preparation for tissue-engineered bones. In this paper, the current research and development of 3D printing materials applied in maxillofacial bone defects at home and abroad were summarised, and the developing trend of 3D printing technology was prospected.

Key words: 3D printing, bone materials, maxillofacial defects, restoration

中图分类号: 

  • R782.2+4
[1] 李小丽, 马剑雄, 李萍, 等. 3D打印技术及应用趋势[J]. 自动化仪表, 2014,35(1):1-5.
Li XL, Ma JX, Li P, et al. 3D printing technology and its application trend[J]. Process Autom Instrum, 2014,35(1):1-5.
[2] Smith BT, Shum J, Wong M, et al. Bone tissue en-gineering challenges in oral & maxillofacial surgery[J]. Adv Exp Med Biol, 2015,881:57-78.
doi: 10.1007/978-3-319-22345-2_4 pmid: 26545744
[3] Liu YF, Xu LW, Zhu HY, et al. Technical procedures for template-guided surgery for mandibular recons-truction based on digital design and manufacturing[J]. Biomed Eng Online, 2014,13:63.
doi: 10.1186/1475-925X-13-63 pmid: 24886431
[4] 党莹, 李月, 李瑞玉, 等. 骨组织工程支架材料在骨缺损修复及3D打印技术中的应用[J]. 中国组织工程研究, 2017,21(14):2266-2273.
Dang Y, Li Y, Li RY, et al. Three-dimensional prin-ting technology preparation of bone tissue engine-ering scaffold materials in bone defect repair[J]. Chin J Tissue Eng Res, 2017,21(14):2266-2273.
[5] 阮建明, 邹俭鹏, 黄伯云, 等. 生物材料学[M]. 北京: 科学出版社, 2004.
Ran JM, Zou JP, Huang BY, et al. Biomaterials[M]. Beijing: Science Press, 2004.
[6] Chanchareonsook N, Tideman H, Lee S, et al. Man-dibular reconstruction with a bioactive-coated cem-entless Ti6Al4V modular endoprosjournal in Macaca fascicularis[J]. Int J Oral Maxillofac Surg, 2014,43(6):758-768.
pmid: 24507820
[7] 沈霖, 林燕萍, 王拥军. 骨伤科实验研究[M]. 北京: 北京科学技术出版社, 2005.
Shen L, Lin YP, Wang YJ. Experimental study on orthopedics[M]. Beijing: Beijing Science and Te-chnology Press, 2005.
[8] 王亮, 郭玉兴, 黄华, 等. 颌骨缺损修复用多孔镁合金支架材料的生物安全性评价研究[J]. 中国组织工程研究, 2019,23(26):4121-4128.
Wang L, Guo YX, Huang H, et al. Evaluation of biosafety of porous magnesium alloy scaffolds for jaw defects[J]. Chin J Tissue Eng Res, 2019,23(26):4121-4128.
[9] 阮建明, 叶雷, 谢健全, 等. 医用金属植入材料多孔铌及制备方法: 中国, CN201010186291.X[P]. 2011-11-30.
Ran JM, Ye L, Xie JQ, et al. Porous niobium and its preparation method: China, CN201010186291.X[P]. 2011-11-30.
[10] Ikumi R, Miyahara T, Akino N, et al. Guided bone regeneration using a hydrophilic membrane made of unsintered hydroxyapatite and poly(L-lactic acid) in a rat bone-defect model[J]. Dent Mater J, 2018,37(6):912-918.
pmid: 29962416
[11] 张海峰, 杜子婧, 毛曦媛, 等. 3D打印PLA-HA复合材料构建组织工程骨的实验研究[J]. 国际骨科学杂志, 2016,37(1):57-63.
Zhang HF, Du ZJ, Mao XY, et al. Experimental re-serarch of constructing tissue engineered bone using three-dimensional printed polylactic acid-hydroxya-patite composite scaffolds[J]. Int J Orthop, 2016,37(1):57-63.
[12] 陈智谦, 穆雄铮. 颅骨缺损修补材料应用的Meta分析[J]. 中国组织工程研究, 2018,22(30):4913-4920.
Chen ZQ, Mu XZ. A meta-analysis of repair mate-rials used in cranioplasty[J]. Chin J Tissue Eng Res, 2018,22(30):4913-4920.
[13] 向声燚, 焦志伟, 马昊鹏, 等. 聚己内酯/纳米羟基磷灰石复合材料的3D打印及性能[J]. 工程塑料应用, 2018,46(8):122-125, 130.
Xiang SY, Jiao ZW, Ma HP, et al. 3D printing and properties of PCL/nano-HA composites[J]. Eng Plast Appl, 2018,46(8):122-125, 130.
[14] Foletti JM, Lari N, Dumas P, et al. PEEK customized implant for skull esthetic reconstruction[J]. Rev Stomatol Chir Maxillofac, 2012,113(6):468-471.
doi: 10.1016/j.stomax.2012.07.008 pmid: 23182690
[15] 林柳兰, 周建勇. 3D打印聚醚醚酮及其复合材料修复骨缺损的应用现况[J]. 中国组织工程研究, 2020,24(10):1622-1628.
Lin LL, Zhou JY. Application status of 3D printed polyetheretherketone and its composite in bone def-ect repair[J]. Chin J Tissue Eng Res, 2020,24(10):1622-1628.
[16] Li QY, Zhang YX, Wang D, et al. Porous polyether ether ketone: a candidate for hard tissue implant materials[J]. Mater Des, 2017,116:171-175.
[17] 穆苍山, 靳欢, 金永健, 等. 3D打印聚醚醚酮修补材料在颅骨缺损修补手术中的应用效果分析[J]. 航空航天医学杂志, 2019,30(7):774-776.
Mu CS, Jin H, Jin YJ, et al. Analysis of the applica-tion effect of 3D-printed polyether ketone repair material in cranial defect repair surgery[J]. J Aerosp Med, 2019,30(7):774-776.
[18] Scolozzi P. Maxillofacial reconstruction using polyetheretherketone patient-specific implants by “mirroring” computational planning[J]. Aesthetic Plast Surg, 2012,36(3):660-665.
doi: 10.1007/s00266-011-9853-2 pmid: 22258832
[19] 陈小文. 快速成型光固化树脂体系的研究[D]. 广州: 华南理工大学, 2011.
Chen XW. Study on photocurable resins used in stereolithography[D]. Guangzhou: South China University of Technology, 2011.
[20] 胡敏, 谭新颖, 鄢荣曾, 等. 3D打印技术在口腔颌面外科领域中的应用进展[J]. 中国实用口腔科杂志, 2014,7(6):335-339.
Hu M, Tan XY, Yan RZ, et al. Application progress of 3D printing technology in the field of oral and maxillofacial surgery[J]. Chin J Pract Stomatol, 2014,7(6):335-339.
[21] Ciocca L, De Crescenzio F, Fantini M, et al. CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study[J]. Comput Med Ima-ging Graph, 2009,33(1):58-62.
[22] Smeets R, Barbeck M, Hanken, et al. Selective laser-melted fully biodegradable scaffold composed of poly(D,L-lactide) and β-tricalcium phosphate with potential as a biodegradable implant for complex maxillofacial reconstruction: in vitro and in vivo results[J]. J Biomed Mater Res Part B Appl Biomater, 2017,105(5):1216-1231.
[23] Li JH, Hsu Y, Luo E, et al. Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy[J]. Aesthetic Plast Surg, 2011,35(4):636-640.
doi: 10.1007/s00266-010-9602-y pmid: 20972567
[24] 史舒雅, 陈亚明. 生物活性玻璃在口腔医学中的应用[J]. 口腔生物医学, 2013,4(1):44-47.
Shi SY, Chen YM. Application of bioactive glass in stomatology[J]. Oral Biomed, 2013,4(1):44-47.
[25] 王晶晶, 施亮, 徐婧, 等. 溶胶凝胶微纳米生物活性玻璃对恒河猴牙槽骨缺损的修复作用[J]. 广东医学, 2016,37(11):1610-1612.
Wang JJ, Shi L, Xu J, et al. Repair of alveolar bone defects in Ganges River monkeys by sol gel mi-cronano bioactive glass[J]. Guangdong Med J, 2016,37(11):1610-1612.
[26] Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprin-ting of collagen to rebuild components of the human heart[J]. Science, 2019,365(6452):482-487.
pmid: 31371612
[27] Hynes RO. Integrins: bidirectional, allosteric signa-ling machines[J]. Cell, 2002,110(6):673-687.
pmid: 12297042
[28] Kang HJ, Peng J, Lu SB, et al. In vivo cartilage repair using adipose-derived stem cell-loaded de-cellularized cartilage ECM scaffolds[J]. J Tissue Eng Regen Med, 2014,8(6):442-453.
doi: 10.1002/term.v8.6
[29] Ma XY, Yu C, Wang PR, et al. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microar-chitecture[J]. Biomaterials, 2018,185:310-321.
doi: 10.1016/j.biomaterials.2018.09.026 pmid: 30265900
[30] Xu YY, Guo X, Yang ST, et al. Construction of bionic tissue engineering cartilage scaffold based on three-dimensional printing and oriented frozen te-chnology[J]. J Biomed Mater Res A, 2018,106(6):1664-1676.
doi: 10.1002/jbm.a.36368 pmid: 29460433
[31] Yang Q, Teng BH, Wang LN, et al. Silk fibroin/carti-lage extracellular matrix scaffolds with sequential delivery of TGF-β3 for chondrogenic differentiation of adipose-derived stem cells[J]. Int J Nanomedicine, 2017,12:6721-6733.
doi: 10.2147/IJN.S141888 pmid: 28932116
[32] Lin KF, He S, Song Y, et al. Low-temperature additive manufacturing of biomimic three-dimensional hy-droxyapatite/collagen scaffolds for bone regeneration[J]. ACS Appl Mater Interfaces, 2016,8(11):6905-6916.
doi: 10.1021/acsami.6b00815 pmid: 26930140
[33] Yang Y, Lei D, Huang SX, et al. Elastic 3D-printed hybrid polymeric scaffold improves cardiac remo-deling after myocardial infarction[J]. Adv Healthc Mater, 2019,8(10):e1900065.
pmid: 30941925
[34] 邹运, 韩青, 徐晓麟, 等. 骨科和口腔颌面外科3D打印模型的精度验证和可靠性分析[J]. 吉林大学学报(医学版), 2017,43(5):996-1001, 1074.
Zou Y, Han Q, Xu XL, et al. Accuracy verification and reliability analysis of three-dimensional printing model in orthopedics and maxillofacial surgery[J]. J Jilin Univ Med Ed, 2017,43(5):996-1001, 1074.
[35] 丁冉, 吴志宏, 邱贵兴, 等. 选择性激光烧结技术的多孔钛合金支架的骨组织工程学观察[J]. 中华医学杂志, 2014,94(19):1499-1502.
Ding R, Wu ZH, Qiu GX, et al. Selective laser sinte-ring-produced porous titanium ahoy scaffold for bone tissue engineering[J]. Nat Med J China, 2014,94(19):1499-1502.
[36] 曾浩, 王敏, 陈冬, 等. 选择性激光烧结技术制作的双相磷酸钙骨组织工程支架的工艺和生物学性能[J]. 口腔医学研究, 2018,34(2):165-168.
Zeng H, Wang M, Chen D, et al. Preparation of biphasic calcium phosphate scaffolds for bone tissue engineering by selective laser sintering[J]. J Oral Sci Res, 2018,34(2):165-168.
[37] 刘许, 宋阳. 用于3D打印的生物相容性高分子材料[J]. 合成树脂及塑料, 2015,32(4):96-99, 102.
Liu X, Song Y. Biodegradable polymer material for three-dimensional printing technology[J]. China Synth Resin Plast, 2015,32(4):96-99, 102.
[38] 葛建华, 王迎军, 闵少雄. 含乙二醇-乳酸共聚物的聚乳酸组织工程支架体内外降解和生物矿化性能研究[J]. 生物医学工程学杂志, 2010,27(5):1070-1075.
Ge JH, Wang YJ, Min SX. Degradable performance and bio-mineralization function of PLA-PEG-PLA/PLA tissue engineering scaffold in vitro and in vivo[J]. J Biomed Eng, 2010,27(5):1070-1075.
[39] Li SJ, Yan YN, Xiong Z, et al. Gradient hydrogel construct based on an improved cell assembling system[J]. J Bioact Compatible Polym, 2009,24(1_suppl):84-99.
[40] Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques[J]. J Funct Biomater, 2018,9(1):E17.
[41] 李俊达, 陈美霖, 韦晓英, 等. 覆盖富血小板血浆3D打印聚己内酯支架对牙髓细胞体外生物学行为的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2017,11(3):149-156.
Li JD, Chen ML, Wei XY, et al. The influence of 3D-printed polycaprolactone scaffolds coated with platelet-rich plasma on the biological functions of dental pulp cells[J/OL]. Chin J Stomatol Res (Elec-tron Ed), 2017,11(3):149-156.
[42] Barry RA Ⅲ, Shepherd RF, Hanson JN, et al. Direct-write assembly of 3D hydrogel scaffolds for guided cell growth[J]. Adv Mater, 2009,21(23):2407-2410.
[43] Cubo N, Garcia M, Del Cañizo JF, et al. 3D bioprinting of functional human skin: production and in vivo analysis[J]. Biofabrication, 2016,9(1):015006.
doi: 10.1088/1758-5090/9/1/015006 pmid: 27917823
[44] Kolesky DB, Homan KA, Skylar-Scott MA, et al. Three-dimensional bioprinting of thick vascularized tissues[J]. Proc Natl Acad Sci U S A, 2016,113(12):3179-3184.
doi: 10.1073/pnas.1521342113 pmid: 26951646
[45] Wu JT, Yuan C, Ding Z, et al. Multi-shape active composites by 3D printing of digital shape memory polymers[J]. Sci Rep, 2016,6:24224.
pmid: 27071543
[1] 刘春煦,鲁雨晴,贾璐铭,董博,张倩倩,于海洋. 选择性激光熔融与铸造钛合金卡环的模拟摘戴固位力研究[J]. 国际口腔医学杂志, 2020, 47(2): 152-158.
[2] 王珂, 项涛, 汤亚玲, 梁新华. 3D打印技术在口腔颌面外科实验教学中的应用[J]. 国际口腔医学杂志, 2018, 45(1): 119-124.
[3] 乔翔鹤, 李龙江. 上颌骨肿瘤切除后眶底缺损的即刻修复重建[J]. 国际口腔医学杂志, 2017, 44(6): 737-742.
[4] 王静,袁荣涛,董蒨. 计算机辅助手术系统与3D打印技术在口腔颌面部缺损修复重建中的应用[J]. 国际口腔医学杂志, 2016, 43(6): 725-728.
[5] 索来 陈志强 罗锋 李中杰 万乾炳. 固定义齿联合活动义齿修复牙本质发育不全患者1例[J]. 国际口腔医学杂志, 2015, 42(3): 260-262.
[6] 李源静 刘文静 杨岚综述 郭吕华审校. 中药用于骨组织修复重建的研究进展[J]. 国际口腔医学杂志, 2013, 40(4): 523-525.
[7] 季彤. 口腔颌面肿瘤患者的修复重建与生存质量[J]. 国际口腔医学杂志, 2004, 31(S1): -.
[8] 蒋继党,孙坚. 下颌骨节段性缺损及重建对语音功能的影响[J]. 国际口腔医学杂志, 2004, 31(05): 362-364.
[9] 马宏涛 孙坚. 上颌骨缺损分类的研究进展[J]. 国际口腔医学杂志, 2003, 30(03): 223-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王涛. 外科优先序列治疗——正颌外科的发展热点之一及其误区[J]. 国际口腔医学杂志, 2020, 47(5): 497 -505 .
[2] 杨佩佩,杨羽晨,张强. 尼古丁对牙槽骨破骨细胞的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 616 -620 .
[3] 薛晶. 邻面成形系统的发展和临床应用[J]. 国际口腔医学杂志, 2020, 47(6): 621 -626 .
[4] 尹圆圆,马华钰,李昕怡,徐静晨,柳汀,陈嵩,何姝姝. 小鼠正畸牙移动中牙周组织自噬相关基因表达的初步研究[J]. 国际口腔医学杂志, 2020, 47(6): 627 -634 .
[5] 陈青青,刘珍巧,王豫蓉. 穴位中频脉冲电刺激对下颌前伸大鼠咬肌改建的生理与生化研究[J]. 国际口腔医学杂志, 2020, 47(6): 635 -643 .
[6] 汪是琦,常雅琴,陈斌,谭葆春,泥艳红. 植骨术与植骨联用屏障膜在牙周再生治疗中临床疗效对比的系统评价与Meta分析[J]. 国际口腔医学杂志, 2020, 47(6): 644 -651 .
[7] 李静雅,税钰森,郭永文. 循环牵张应力影响人牙周膜细胞成骨分化机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 652 -660 .
[8] 吕辉,王华,孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661 -668 .
[9] 何宇晴,但红霞,陈谦明. 光动力疗法在口腔黏膜癌变防治中的应用[J]. 国际口腔医学杂志, 2020, 47(6): 669 -676 .
[10] 吴洁林,高莺. 硬腭获取游离软组织移植物的应用进展[J]. 国际口腔医学杂志, 2020, 47(6): 686 -692 .