国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (4): 431-438.doi: 10.7518/gjkq.2020038

• 综述 • 上一篇    下一篇

环氧合酶2/前列腺素E2通路调控口腔肿瘤机制的研究进展

孔利心,任彪,程磊()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院牙体牙髓病科 成都 610041
  • 收稿日期:2019-09-03 修回日期:2020-02-09 出版日期:2020-07-01 发布日期:2020-07-10
  • 通讯作者: 程磊
  • 作者简介:孔利心,住院医师,硕士,Email:494124336@qq.com
  • 基金资助:
    国家重点研发计划重点专项课题(2017YFC0840100);国家重点研发计划重点专项课题(2017YFC0840107)

Research progress on regulation of cyclooxygenase-2/prostaglandin E2 pathway on oral cancer

Kong Lixin,Ren Biao,Cheng Lei()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2019-09-03 Revised:2020-02-09 Online:2020-07-01 Published:2020-07-10
  • Contact: Lei Cheng
  • Supported by:
    This study was supported by National Key Research Program of China(2017YFC0840100);This study was supported by National Key Research Program of China(2017YFC0840107)

摘要:

口咽癌是全球第6大最常见的恶性肿瘤,5年生存率低于60%,严重影响着人类的健康和生活质量。口腔肿瘤中环氧合酶2(COX-2)/前列腺素E2(PGE2)显著高表达,表明该通路与口腔肿瘤密切相关,是口腔肿瘤重要的调控通路。研究表明COX-2/PGE2通路可通过上调表皮生长因子受体促进肿瘤生长、上调内皮生长因子调节血管生成、上调Bcl-2调节凋亡等不同方式调节口腔肿瘤的发生、发展。本文对该通路在口腔肿瘤中的研究进展进行综述。

关键词: 环氧合酶2, 口腔肿瘤, 口腔恶性肿瘤, 炎性通路, 癌前病变, 抗肿瘤

Abstract:

Oral cancer is the sixth most common tumour worldwide. The 5-year survival rate of oral cancer is lower than 60%, and this disease seriously affects human health and quality of life. The cyclooxygenase (COX)-2/prostaglandin (PG) E2 pathway is significantly elevated in oral tumour tissues. This pathway is thus closely related to oral cancer. The COX-2/PGE2 pathway can upregulate epidermal growth factor receptor to enhance cancer growth, upregulate vascular endothelial growth factor to promote angiogenesis and upregulate Bcl-2 to induce cancer apoptosis. The COX-2/PGE2 pathway is one of the most important regulatory pathways in oral cancer. This article will summarise the latest research progress on this pathway in oral cancer.

Key words: cyclooxygenase-2, oral cancer, oral malignant cancer, inflammatory pathway, precancerous lesions, anti-cancer

中图分类号: 

  • R739.8

图 1

COX-2/PGE2通路"

[1] Dhanuthai K, Rojanawatsirivej S, Thosaporn W, et al. Oral cancer: a multicenter study[J]. Med Oral Patol Oral Cir Bucal, 2018,23(1):e23-e29.
doi: 10.4317/medoral.21999 pmid: 29274153
[2] Lu YC, Chen YJ, Wang HM, et al. Oncogenic func-tion and early detection potential of miRNA-10b in oral cancer as identified by microRNA profiling[J]. Cancer Prev Res (Phila), 2012,5(4):665-674.
[3] Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer[J]. Oral Oncol, 2009,45(4/5):309-316.
[4] Han S, Chen Y, Ge X, et al. Epidemiology and cost analysis for patients with oral cancer in a university hospital in China[J]. BMC Public Health, 2010,10:196.
doi: 10.1186/1471-2458-10-196 pmid: 20398380
[5] Sasahira T, Kurihara M, Bhawal UK, et al. Downre-gulation of miR-126 induces angiogenesis and lym-phangiogenesis by activation of VEGF-A in oral cancer[J]. Br J Cancer, 2012,107(4):700-706.
doi: 10.1038/bjc.2012.330 pmid: 22836510
[6] Mishra R. Glycogen synthase kinase 3 beta: can it be a target for oral cancer[J]. Mol Cancer, 2010,9:144.
doi: 10.1186/1476-4598-9-144 pmid: 20537194
[7] Irani S. Distant metastasis from oral cancer: a review and molecular biologic aspects[J]. J Int Soc Prev Community Dent, 2016,6(4):265-271.
doi: 10.4103/2231-0762.186805 pmid: 27583211
[8] Legge CJ, Colley HE, Lawson MA, et al. Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer[J]. J Oral Pathol Med, 2019,48(9):803-809.
doi: 10.1111/jop.12921 pmid: 31309616
[9] Roberts TJ, Colevas AD, Hara W, et al. Number of positive nodes is superior to the lymph node ratio and American Joint Committee on Cancer N staging for the prognosis of surgically treated head and neck squamous cell carcinomas[J]. Cancer, 2016,122(9):1388-1397.
doi: 10.1002/cncr.29932 pmid: 26969807
[10] Moazeni-Roodi A, Allameh A, Harirchi I, et al. Stu-dies on the contribution of cox-2 expression in the progression of oral squamous cell carcinoma and H-ras activation[J]. Pathol Oncol Res, 2017,23(2):355-360.
doi: 10.1007/s12253-016-0114-1 pmid: 27628320
[11] Greenhough A, Smartt HJ, Moore AE, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenviron-ment[J]. Carcinogenesis, 2009,30(3):377-386.
doi: 10.1093/carcin/bgp014 pmid: 19136477
[12] Ghosh N, Chaki R, Mandal V, et al. COX-2 as a target for cancer chemotherapy[J]. Pharmacol Rep, 2010,62(2):233-244.
doi: 10.1016/s1734-1140(10)70262-0 pmid: 20508278
[13] Gupta RA, Dubois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2[J]. Nat Rev Cancer, 2001,1(1):11-21.
doi: 10.1038/35094017 pmid: 11900248
[14] Cha YI, DuBois RN. NSAIDs and cancer prevention: targets downstream of COX-2[J]. Annu Rev Med, 2007,58:239-252.
doi: 10.1146/annurev.med.57.121304.131253 pmid: 17100552
[15] Salimi M, Esfahani M, Habibzadeh N, et al. Change in nicotine-induced VEGF, PGE2 and COX-2 ex-pression following COX inhibition in human oral squamous cancer[J]. J Environ Pathol Toxicol Oncol, 2012,31(4):349-356.
doi: 10.1615/jenvironpatholtoxicoloncol.2013005365 pmid: 23394447
[16] Aoki T, Tsukinoki K, Karakida K, et al. Expression of cyclooxygenase-2, Bcl-2 and Ki-67 in pleomor-phic adenoma with special reference to tumor proli-feration and apoptosis[J]. Oral Oncol, 2004,40(9):954-959.
doi: 10.1016/j.oraloncology.2004.04.014 pmid: 15380175
[17] Gallo O, Franchi A, Magnelli L, et al. Cyclooxy-genase-2 pathway correlates with VEGF expression in head and neck cancer. Implications for tumor an-giogenesis and metastasis[J]. Neoplasia, 2001,3(1):53-61.
doi: 10.1038/sj.neo.7900127 pmid: 11326316
[18] Yang CC, Tu HF, Wu CH, et al. Up-regulation of HB-EGF by the COX-2/PGE2 signaling associates with the cisplatin resistance and tumor recurrence of advanced HNSCC[J]. Oral Oncol, 2016,56:54-61.
doi: 10.1016/j.oraloncology.2016.03.010 pmid: 27086487
[19] Singh S, Pandey VP, Naaz H, et al. Structural mode-ling and simulation studies of human cyclooxygenase (COX) isozymes with selected terpenes: implications in drug designing and development[J]. Comput Biol Med, 2013,43(6):744-750.
doi: 10.1016/j.compbiomed.2013.02.019 pmid: 23668350
[20] Chandrasekharan NV, Dai H, Roos KL, et al. COX-3, a cyclooxygenase-1 variant inhibited by acetamino-phen and other analgesic/antipyretic drugs: cloning, structure, and expression[J]. Proc Natl Acad Sci USA, 2002,99(21):13926-13931.
doi: 10.1073/pnas.162468699 pmid: 12242329
[21] Ibrahim Abdelwahab S, Syaed Koko W, Mohamed Elhassan Taha M, et al. In vitro and in vivo anti-in-flammatory activities of columbin through the inhi-bition of cycloxygenase-2 and nitric oxide but not the suppression of NF-κB translocation[J]. Eur J Pharmacol, 2012,678(1/2/3):61-70.
[22] Yu TT, Lao XZ, Zheng H. Influencing COX-2 activity by COX related pathways in inflammation and cancer[J]. Mini Rev Med Chem, 2016,16(15):1230-1243.
doi: 10.2174/1389557516666160505115743 pmid: 27145850
[23] Perrone MG, Scilimati A, Simone L, et al. Selective COX-1 inhibition: a therapeutic target to be reconsi-dered[J]. Curr Med Chem, 2010,17(32):3769-3805.
doi: 10.2174/092986710793205408 pmid: 20858219
[24] Kalinski P. Regulation of immune responses by pros-taglandin E2[J]. J Immunol, 2012,188(1):21-28.
doi: 10.4049/jimmunol.1101029 pmid: 22187483
[25] Hashemi Goradel N, Najafi M, Salehi E, et al. Cyc-looxygenase-2 in cancer: a review[J]. J Cell Physiol, 2019,234(5):5683-5699.
doi: 10.1002/jcp.27411 pmid: 30341914
[26] Hugo HJ, Saunders C, Ramsay RG, et al. New in-sights on COX-2 in chronic inflammation driving breast cancer growth and metastasis[J]. J Mammary Gland Biol Neoplasia, 2015,20(3/4):109-119.
[27] Wakabayashi K. NSAIDs as cancer preventive agents[J]. Asian Pac J Cancer Prev, 2000,1:97-113.
pmid: 12718676
[28] Lim HJ, Park JH, Jo C, et al. Cigarette smoke extracts and cadmium induce COX-2 expression through γ- secretase-mediated p38 MAPK activation in C6 astroglia cells[J]. PLoS One, 2019,14(2):e0212749.
doi: 10.1371/journal.pone.0212749 pmid: 30794693
[29] Chang MC, Chen YJ, Chang HH, et al. Areca nut components affect COX-2, cyclin B1/cdc25C and keratin expression, PGE2 production in keratinocyte is related to reactive oxygen species, CYP1A1, Src, EGFR and Ras signaling[J]. PLoS One, 2014,9(7):e101959.
doi: 10.1371/journal.pone.0101959 pmid: 25051199
[30] Peng W, Liu YJ, Hu MB, et al. Using the “target constituent removal combined with bioactivity assay” strategy to investigate the optimum arecoline content in charred areca nut[J]. Sci Rep, 2017,7:40278.
doi: 10.1038/srep40278 pmid: 28054652
[31] Engen SA, Schreurs O, Petersen F, et al. The regula-tory role of the oral commensal Streptococcus mitis on human monocytes[J]. Scand J Immunol, 2018,87(2):80-87.
doi: 10.1111/sji.12636 pmid: 29194752
[32] Engen SA, Rørvik GH, Schreurs O, et al. The oral commensal Streptococcus mitis activates the aryl hydrocarbon receptor in human oral epithelial cells[J]. Int J Oral Sci, 2017,9(3):145-150.
doi: 10.1038/ijos.2017.17 pmid: 28621325
[33] Wang YX, Ren B, Zhou XD, et al. Growth and ad-herence of Staphylococcus aureus were enhanced through the PGE2 produced by the activated COX-2/PGE2 pathway of infected oral epithelial cells[J]. PLoS One, 2017,12(5):e0177166.
doi: 10.1371/journal.pone.0177166 pmid: 28472126
[34] Arreaza AJ, Rivera H, Correnti M. Expression of COX-2 and bcl-2 in oral lichen planus lesions and lichenoid reactions[J]. Ecancermedicalscience, 2014,8:411.
doi: 10.3332/ecancer.2014.411 pmid: 24834112
[35] Carrozzo M, Porter S, Mercadante V, et al. Oral lichen planus: a disease or a spectrum of tissue reactions? Types, causes, diagnostic algorhythms, prognosis, management strategies[J]. Periodontol 2000, 2019,80(1):105-125.
doi: 10.1111/prd.12260 pmid: 31090143
[36] Lysitsa S, Samson J, Gerber-Wicht C, et al. COX-2 expression in oral lichen planus[J]. Dermatology (Basel), 2008,217(2):150-155.
doi: 10.1159/000137672
[37] Boldrup L, Coates PJ, Hedberg Y, et al. Expression of p63, COX-2, EGFR and β-catenin in smokers and patients with squamous cell carcinoma of the head and neck reveal variations in non-neoplastic tissue and no obvious changes in smokers[J]. Int J Oncol, 2005,27(6):1661-1667.
pmid: 16273222
[38] Singh P, Grover J, Byatnal AA, et al. Elucidating the role of cyclooxygenase-2 in the pathogenesis of oral lichen planus—an immunohistochemical study with supportive histochemical analysis[J]. J Oral Pathol Med, 2017,46(5):381-386.
doi: 10.1111/jop.12521 pmid: 27889928
[39] Chankong T, Chotjumlong P, Sastraruji T, et al. In-creased cyclooxygenase 2 expression in association with oral lichen planus severity[J]. J Dent Sci, 2016,11(3):238-244.
doi: 10.1016/j.jds.2015.12.002 pmid: 30894979
[40] Torres López M, Pérez Sayáns M, Chamorro Petr-onacci C, et al. Determination and diagnostic value of CA9 mRNA in peripheral blood of patients with oral leukoplakia[J]. J Enzyme Inhib Med Chem, 2018,33(1):951-955.
doi: 10.1080/14756366.2018.1466120 pmid: 29745265
[41] Sinanoglu A, Soluk-Tekkesin M, Olgac V. Cyclooxy-genase-2 and Ki67 expression in oral leukoplakia: a clinicopathological study[J]. J Oral Maxillofac Res, 2015,6(2):e3.
doi: 10.5037/jomr.2015.6203 pmid: 26229582
[42] Lin YC, Huang HI, Wang LH, et al. Polymorphisms of COX-2 -765G >C and p53 codon 72 and risks of oral squamous cell carcinoma in a Taiwan popula-tion[J]. Oral Oncol, 2008,44(8):798-804.
doi: 10.1016/j.oraloncology.2007.10.006
[43] Dionne KR, Warnakulasuriya S, Zain RB, et al. Potentially malignant disorders of the oral cavity: current practice and future directions in the clinic and laboratory[J]. Int J Cancer, 2015,136(3):503-515.
doi: 10.1002/ijc.28754 pmid: 24482244
[44] Wollina U, Verma SB, Ali FM, et al. Oral submucous fibrosis: an update[J]. Clin Cosmet Investig Dermatol, 2015,8:193-204.
doi: 10.2147/CCID.S80576 pmid: 25914554
[45] Patel PN, Thennavan A, Sen S, et al. Translational approach utilizing COX-2, p53, and MDM2 expres-sions in malignant transformation of oral submucous fibrosis[J]. J Oral Sci, 2015,57(3):169-176.
doi: 10.2334/josnusd.57.169 pmid: 26369479
[46] Tsai CH, Chou MY, Chang YC. The up-regulation of cyclooxygenase-2 expression in human buccal mucosal fibroblasts by arecoline: a possible role in the pathogenesis of oral submucous fibrosis[J]. J Oral Pathol Med, 2003,32(3):146-153.
doi: 10.1034/j.1600-0714.2003.00004.x pmid: 12581384
[47] Li D, Hao SH, Sun Y, et al. Functional polymor-phisms in COX-2 gene are correlated with the risk of oral cancer[J]. Biomed Res Int, 2015,2015:580652.
doi: 10.1155/2015/580652 pmid: 25977924
[48] Sappayatosok K, Maneerat Y, Swasdison S, et al. Expression of pro-inflammatory protein, iNOS, VEGF and COX-2 in oral squamous cell carcinoma (OSCC), relationship with angiogenesis and their clinico-pathological correlation[J]. Med Oral Patol Oral Cir Bucal, 2009,14(7):E319-E324.
pmid: 19300368
[49] Yang SF, Chen MK, Hsieh YS, et al. Prostaglandin E2/EP1 signaling pathway enhances intercellular adhesion molecule 1 (ICAM-1) expression and cell motility in oral cancer cells[J]. J Biol Chem, 2010,285(39):29808-29816.
doi: 10.1074/jbc.M110.108183 pmid: 20647315
[50] Park IS, Jo JR, Hong H, et al. Aspirin induces apo-ptosis in YD-8 human oral squamous carcinoma cells through activation of caspases, down-regulation of Mcl-1, and inactivation of ERK-1/2 and AKT[J]. Toxicol In Vitro, 2010,24(3):713-720.
[51] Byatnal AA, Byatnal A, Sen S, et al. Cyclooxygenase- 2—an imperative prognostic biomarker in oral squamous cell carcinoma—an immunohistochemical study[J]. Pathol Oncol Res, 2015,21(4):1123-1131.
doi: 10.1007/s12253-015-9940-9 pmid: 25962348
[52] Lin YM, Kuo WW, Velmurugan BK, et al. Helio-xanthin suppresses the cross talk of COX-2/PGE2 and EGFR/ERK pathway to inhibit arecoline-induced oral cancer cell (T28) proliferation and blocks tumor growth in xenografted nude mice[J]. Environ Toxicol, 2016,31(12):2045-2056.
doi: 10.1002/tox.22204 pmid: 26464283
[53] Li N, Sood S, Wang S, et al. Overexpression of 5- lipoxygenase and cyclooxygenase 2 in hamster and human oral cancer and chemopreventive effects of zileuton and celecoxib[J]. Clin Cancer Res, 2005,11(5):2089-2096.
doi: 10.1158/1078-0432.CCR-04-1684 pmid: 15756036
[54] Nishimura N, Urade M, Hashitani S, et al. Increased expression of cyclooxygenase (COX)-2 in DMBA-induced hamster cheek pouch carcinogenesis and chemopreventive effect of a selective COX-2 inhi-bitor celecoxib[J]. J Oral Pathol Med, 2004,33(10):614-621.
doi: 10.1111/j.1600-0714.2004.00254.x pmid: 15482328
[55] Li WZ, Ding YQ, Li ZG, et al. Expression of COX-2 and VEGF-C in squamous cell carcinoma of the tongue and its correlation to lymph node metastasis[J]. J South Med Univ, 2008,28(2):180-183.
[56] Divvela AKC, Challa SR, Tagaram IK. Pathogenic role of cyclooxygenase-2 in cancer[J]. J Heal Sci, 2010,56(5):502-516.
[57] Oginni FO, Stoelinga PJ, Ajike SA, et al. A prospe-ctive epidemiological study on odontogenic tumours in a black African population, with emphasis on the relative frequency of ameloblastoma[J]. Int J Oral Maxillofac Surg, 2015,44(9):1099-1105.
doi: 10.1016/j.ijom.2015.03.018 pmid: 25937364
[58] Intapa C. Analysis of prevalence and clinical features of ameloblastoma and its histopathological subtypes in southeast Myanmar and lower northern Thailand populations: a 13-year retrospective study[J]. J Clin Diagn Res, 2017, 11(1): ZC102-ZC106.
doi: 10.7860/JCDR/2017/23629.9295 pmid: 28274056
[59] Effiom OA, Ogundana OM, Akinshipo AO, et al. Ameloblastoma: current etiopathological concepts and management[J]. Oral Dis, 2018,24(3):307-316.
doi: 10.1111/odi.12646 pmid: 28142213
[60] Alsaegh MA, Miyashita H, Taniguchi T, et al. Odon-togenic epithelial proliferation is correlated with COX-2 expression in dentigerous cyst and amelo-blastoma[J]. Exp Ther Med, 2017,13(1):247-253.
doi: 10.3892/etm.2016.3939 pmid: 28123497
[61] Montezuma MAP, Fonseca FP, Benites BM, et al. COX-2 as a determinant of lower disease-free survival for patients affected by ameloblastoma[J]. Pathol Res Pract, 2018,214(6):907-913.
doi: 10.1016/j.prp.2018.03.014 pmid: 29559247
[62] Sharif FN, Oliver R, Sweet C, et al. Interventions for the treatment of keratocystic odontogenic tumours [J]. Cochrane Database Syst Rev, 2015(11): CD008464.
doi: 10.1002/14651858.CD008464.pub3 pmid: 26545201
[63] Anand VK, Arrowood JP Jr, Krolls SO. Malignant potential of the odontogenic keratocyst[J]. Oto-laryngol Head Neck Surg, 1994,111(1):124-129.
[64] Areen RG, McClatchey KD, Baker HL. Squamous cell carcinoma developing in an odontogenic kerato-cyst. Report of a case[J]. Arch Otolaryngol, 1981,107(9):568-569.
doi: 10.1001/archotol.1981.00790450044014 pmid: 7271558
[65] Foley WL, Terry BC, Jacoway JR. Malignant trans-formation of an odontogenic keratocyst: report of a case[J]. J Oral Maxillofac Surg, 1991,49(7):768-771.
doi: 10.1016/s0278-2391(10)80247-2 pmid: 2056380
[66] MacLeod RI, Soames JV. Squamous cell carcinoma arising in an odontogenic keratocyst[J]. Br J Oral Maxillofac Surg, 1988,26(1):52-57.
doi: 10.1016/0266-4356(88)90150-7 pmid: 3278734
[67] Mendes RA, Carvalho JF, van der Waal I. Potential relevance of cyclooxygenase-2 expression in kerato-cystic odontogenic tumours—an immunohistochemical study[J]. J Oral Pathol Med, 2011,40(6):497-503.
doi: 10.1111/j.1600-0714.2010.00997.x pmid: 21496105
[68] Mendes RA, Carvalho JF, van der Waal I,. Chara-cterization and management of the keratocystic odontogenic tumor in relation to its histopathological and biological features[J]. Oral Oncol, 2010,46(4):219-225.
doi: 10.1016/j.oraloncology.2010.01.012 pmid: 20189443
[69] Tsai CH, Huang FM, Yang LC, et al. Immunohisto-chemical localization of cyclooxygenase-2 in radicular cysts[J]. Int Endod J, 2002,35(10):854-858.
doi: 10.1046/j.1365-2591.2002.00584.x pmid: 12406380
[70] Daley TD, Wysocki GP, Pringle GA. Relative in-cidence of odontogenic tumors and oral and jaw cysts in a Canadian population[J]. Oral Surg Oral Med Oral Pathol, 1994,77(3):276-280.
doi: 10.1016/0030-4220(94)90299-2 pmid: 8170660
[1] 肖妍荻, 杨华梅, 但红霞. 抗肿瘤靶向药物相关不良反应在口腔中的表现及处理对策[J]. 国际口腔医学杂志, 2018, 45(2): 140-144.
[2] 王志强, 马丽娟, 周海静, 杨兰, 聂红兵, 薛龙. 益生菌抗肿瘤作用及其机制的研究进展[J]. 国际口腔医学杂志, 2017, 44(6): 636-641.
[3] 梁静, 王凯, 吴家媛. CD24在口腔医学中的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 608-613.
[4] 屈茜1 房付春1 吴补领1,2. 长链非编码RNA在牙周炎和口腔肿瘤疾病中的作用[J]. 国际口腔医学杂志, 2016, 43(1): 62-.
[5] 邵小钧 席庆. 食用槟榔及其与口腔癌间的关系[J]. 国际口腔医学杂志, 2015, 42(6): 668-672.
[6] 曾素云 王建广. 第10号染色体缺失的磷酸酶和张力蛋白同源基因在口腔鳞状细胞癌中的作用[J]. 国际口腔医学杂志, 2015, 42(3): 334-338.
[7] 孙云峰1 江彤2 陈传俊1. 人乳头瘤病毒与口腔肿瘤及其16E5基因[J]. 国际口腔医学杂志, 2014, 41(5): 609-612.
[8] 周湘 刘学聪. 鞣质类化合物在口腔领域中的作用[J]. 国际口腔医学杂志, 2014, 41(1): 108-112.
[9] 李倩1 潘亚萍1,2. 生存蛋白与口腔疾病间的关系[J]. 国际口腔医学杂志, 2013, 40(5): 674-677.
[10] 梁雪艺 周刚. 微核糖核酸在自身免疫性疾病和口腔癌前病变中作用的研究进展[J]. 国际口腔医学杂志, 2013, 40(3): 359-363.
[11] 董小倩 冯云. 高迁移率族蛋白N家族抗肿瘤活性的研究进展[J]. 国际口腔医学杂志, 2013, 40(3): 364-367.
[12] 孟玉生1,2 综述 杨宏宇1 审校. 自然杀伤性T细胞与口腔肿瘤的免疫调节研究进展[J]. 国际口腔医学杂志, 2013, 40(2): 241-244.
[13] 朱晓寒 付纪综述 陈谦明 曾昕审校. 微小RNA 与口腔癌前病变[J]. 国际口腔医学杂志, 2012, 39(3): 394-396.
[14] 张雪1 李一军2综述 陈英新2审校. 雨虎属Ras 同系物-Ⅰ基因及其与口腔肿瘤间的关系[J]. 国际口腔医学杂志, 2012, 39(2): 224-225.
[15] 吴也可 宋东哲 景欢 王馨玉 赵振刚 吕胡玲 廖爽 陈谦明. 雷公藤内酯醇对人口腔鳞状细胞癌细胞株Tca8113 作用的实验研究[J]. 国际口腔医学杂志, 2011, 38(5): 524-526.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .