国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (6): 731-736.doi: 10.7518/gjkq.2022104

• 综述 • 上一篇    下一篇

计算机辅助技术在纤维桩拆除中的应用

蔡娉娉(),卓盈颖,林捷,郑志强()   

  1. 福建医科大学附属口腔医院特诊科 福州 350002
  • 收稿日期:2022-01-25 修回日期:2022-05-14 出版日期:2022-11-01 发布日期:2022-11-03
  • 通讯作者: 郑志强
  • 作者简介:蔡娉娉,硕士,Email:903040951@qq.com
  • 基金资助:
    福建省自然科学基金(2021J01796)

Application of computer-aided technology in fiber post removal

Cai Pingping(),Zhuo Yingying,Lin Jie,Zheng Zhi-qiang.()   

  1. Dept. of VIP Dental Service, Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
  • Received:2022-01-25 Revised:2022-05-14 Online:2022-11-01 Published:2022-11-03
  • Contact: Zhi-qiang. Zheng
  • Supported by:
    Natural Science Foundation of Fujian Province(2021J01796)

摘要:

随着“引导式牙髓治疗”在牙体牙髓领域的应用研究逐渐开展,动态导航系统和数字化导板技术也被应用于纤维桩拆除的临床操作中。相较于现有的纤维桩拆除系统,计算机辅助拆除具有准确、高效、微创等特点。本文通过介绍各种纤维桩拆除方式的临床应用和优缺点,分析计算机辅助技术在临床纤维桩拆除中的准确度及误差因素,以此作一综述,为医师的临床操作提供相关参考依据。

关键词: 数字化导板, 动态导航系统, 纤维桩拆除, 准确度, 误差分析

Abstract:

With the gradual development of “Guided endodontics” in the field of endodontics, dynamic navigation system and digital surgical guide have also been applied to remove the fiber post in clinical. Compared with the current fiber post removal systems, the computer-aided removal methods are accurate, efficient, and minimally invasive. This article reviews the clinical application, advantages and disadvantages of various fiber post removal methods, analyzes the accuracy and error factors of computer-aided technology in fiber post removal, and provides reference for the operations to clinicians.

Key words: digital surgical guide, dynamic navigation system, fiber post removal, accuracy, error analysis

中图分类号: 

  • R 783.4

图1

2种计算机辅助拆除纤维桩技术的临床流程图"

表 1

不同纤维桩拆除方式的优缺点"

方式优点缺点
传统方式

机械

钻头

拆除

套装

1)相较于超声波和钻头,拆除速度快;2)拆除后没有改变牙体抗断裂性1)相较于超声波和钻头,拆除后根管壁上剩余材料量多;2)根管壁上微裂纹产生;3)仅适用于特定的桩系统
钻头1) 相较于拆除套装,拆除后根管壁上剩余材料量少;2)拆除后对根尖微裂缝的形成和扩散没有影响1)去除牙体组织多,侧向穿孔发生率高;2)相较于拆除套装,拆除时间长;3)拆除时间和有效性受操作员经验的显著影响
超声波相较于拆除套装,拆除后根管壁上剩余材料量少1)相较于拆除套装,去除牙体组织多;拆除时间长;2)拆除时间和有效性受操作员经验的显着影响;3)相较于未被移除或者拆除套装,拆除后牙体断裂阻力值显著降低

计算机

辅助技术

导板1)高精度,将钻头精确地保持在桩的轴线上;2)拆除速度快;3) 微创,去除牙体组织少;4) 降低技术敏感性,无需学习周期1)数据采集、设计制作及应用中的任何误差都会影响准确性;2)咬合空间有限的区域难以应用;3)冲洗困难、无法顺利排出碎屑;4)缺乏3D 实时可视化,不允许术中改变钻头轨迹
导航1)相较于传统方式,高精度、偏差小;拆除速度快;微创、去除牙体组织少;2)相较于导板,咬合空间有限的区域可以使用;3D实时可视化,允许术中改变钻头轨迹;易于冲洗,降低过热风险1)数据采集、设备应用中的任何误差都会影响准确性;2)手术区同颌对侧无牙或重度松动者难以应用;3)成本高、附件笨重和设置繁琐;4)需要学习周期,操作成功取决于操作者的熟练程度

表 2

计算机辅助拆除方式的误差来源"

方式误差类型
数据误差技术误差人为误差
数字化导板技术1)CBCT数据的采集1)不同导板设计软件1)患者的开口度
2)口内数字化印模过程2)3D打印设备和打印材料2)操作者的视野受阻
3)导板的就位情况
动态导航技术1)CBCT数据的采集1)不同动态导航系统软件1)患者的配合程度
2)口内数字化印模过程2)跟踪定位系统2)操作者的熟练程度
3)配准方式及配准过程
1 Ahmed SN, Donovan TE, Ghuman T. Survey of dentists to determine contemporary use of endodontic posts[J]. J Prosthet Dent, 2017, 117(5): 642-645.
2 Vichi A, Grandini S, Ferrari M. Comparison between two clinical procedures for bonding fiber posts into a root canal: a microscopic investigation[J]. J Endod, 2002, 28(5): 355-360.
3 Gesi A, Magnolfi S, Goracci C, et al. Comparison of two techniques for removing fiber posts[J]. J Endod, 2003, 29(9): 580-582.
4 Scotti N, Bergantin E, Alovisi M, et al. Evaluation of a simplified fiber post removal system[J]. J Endod, 2013, 39(11): 1431-1434.
5 Moreno-Rabié C, Torres A, Lambrechts P, et al. Clinical applications, accuracy and limitations of guided endodontics: a systematic review[J]. Int Endod J, 2020, 53(2): 214-231.
6 Bardales-Alcocer J, Ramírez-Salomón M, Vega-Lizama E, et al. Endodontic retreatment using dynamic navigation: a case report[J]. J Endod, 2021, 47(6): 1007-1013.
7 Schwindling FS, Tasaka A, Hilgenfeld T, et al. Three-dimensional-guided removal and preparation of dental root posts-concept and feasibility[J]. J Prosthodont Res, 2020, 64(1): 104-108.
8 Chandler NP, Qualtrough AJ, Purton DG. Comparison of two methods for the removal of root canal posts[J]. Quintessence Int, 2003, 34(7): 534-536.
9 Han T, Chen K, Cao R, et al. Influence of post-core material and cement peculiarities on stress of post-cores under ultrasonic vibration: a three-dimensio-nal finite element analysis[J]. Int Endod J, 2020, 53(12): 1696-1704.
10 Haupt F, Riggers I, Konietschke F, et al. Effectiveness of different fiber post removal techniques and their influence on dentinal microcrack formation[J]. Clin Oral Investig, 2022, 26(4): 3679-3685.
11 Haupt F, Pfitzner J, Hülsmann M. A comparative in vitro study of different techniques for removal of fibre posts from root canals[J]. Aust Endod J, 2018, 44(3): 245-250.
12 Aydemir S, Arukaslan G, Sarıdağ S, et al. Compa-ring fracture resistance and the time required for two different fiber post removal systems[J]. J Prosthodont, 2018, 27(8): 771-774.
13 王晓华, 刘艾芃, 邓文正. 数字化导板在口腔种植中的研究进展[J]. 华西口腔医学杂志, 2020, 38(1): 95-100.
Wang XH, Liu AP, Deng WZ. Research advances in the use of digital surgical guides in implantology[J]. West China J Stomatol, 2020, 38(1): 95-100.
14 吕晶, 凌均棨. 根管定位数字化导板的研究进展[J]. 国际口腔医学杂志, 2018(2): 233-237.
Lü J, Ling JQ. Research progress on the digital template for root canal location[J]. Int J Stomatol, 2018(2): 233-237.
15 Giacomino CM, Ray JJ, Wealleans JA. Targeted endodontic microsurgery: a novel approach to anatomically challenging scenarios using 3-dimensio-nal-printed guides and trephine burs-a report of 3 cases[J]. J Endod, 2018, 44(4): 671-677.
16 Strbac GD, Schnappauf A, Giannis K, et al. Guided autotransplantation of teeth: a novel method using virtually planned 3-dimensional templates[J]. J Endod, 2016, 42(12): 1844-1850.
17 Liu R, Xie C, Sun M, et al. Guided removal of a fractured fiber post and immediate restoration with a digitally prefabricated titanium post-and-core and zirconia crown: a clinical report[J]. J Prosthet Dent, 2021: S0022-3913(21)00412.
18 Maia LM, Moreira Júnior G, Albuquerque RC, et al. Three-dimensional endodontic guide for adhesive fiber post removal: a dental technique[J]. J Prosthet Dent, 2019, 121(3): 387-390.
19 Perez C, Sayeh A, Etienne O, et al. Microguided endo-dontics: accuracy evaluation for access through intra-root fibre-post[J]. Aust Endod J, 2021, 47(3): 592-598.
20 Janabi A, Tordik PA, Griffin IL, et al. Accuracy and efficiency of 3-dimensional dynamic navigation system for removal of fiber post from root canal-trea-ted teeth[J]. J Endod, 2021, 47(9): 1453-1460.
21 Maia LM, Bambirra Júnior W, Toubes KM, et al. Endodontic guide for the conservative removal of a fiber-reinforced composite resin post[J]. J Prosthet Dent, 2022, 128(1): 4-7.
22 Perez C, Finelle G, Couvrechel C. Optimisation of a guided endodontics protocol for removal of fibre-reinforced posts[J]. Aust Endod J, 2020, 46(1): 107-114.
23 Loureiro MAZ, Elias MRA, Capeletti LR, et al. Gui-ded endodontics: volume of dental tissue removed by guided access cavity preparation-an ex vivo study[J]. J Endod, 2020, 46(12): 1907-1912.
24 Krastl G, Zehnder MS, Connert T, et al. Guided en-dodontics: a novel treatment approach for teeth with pulp canal calcification and apical pathology[J]. Dent Traumatol, 2016, 32(3): 240-246.
25 Zehnder MS, Connert T, Weiger R, et al. Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location[J]. Int Endod J, 2016, 49(10): 966-972.
26 Hilgenfeld T, Juerchott A, Deisenhofer UK, et al. In vivo accuracy of tooth surface reconstruction based on CBCT and dental MRI-a clinical pilot study[J]. Clin Oral Implants Res, 2019, 30(9): 920-927.
27 Kihara H, Hatakeyama W, Komine F, et al. Accuracy and practicality of intraoral scanner in dentistry: a literature review[J]. J Prosthodont Res, 2020, 64(2): 109-113.
28 Kim T, Lee S, Kim GB, et al. Accuracy of a simplified 3D-printed implant surgical guide[J]. J Prosthet Dent, 2020, 124(2): 195.e2-201.e2.
29 Edelmann C, Wetzel M, Knipper A, et al. Accuracy of computer-assisted dynamic navigation in implant placement with a fully digital approach: a prospective clinical trial[J]. J Clin Med, 2021, 10(9): 1808.
30 Dianat O, Gupta S, Price JB, et al. Guided endodontic access in a maxillary molar using a dynamic navi-gation system[J]. J Endod, 2021, 47(4): 658-662.
31 Dianat O, Nosrat A, Mostoufi B, et al. Accuracy and efficiency of guided root-end resection using a dynamic navigation system: a human cadaver study[J]. Int Endod J, 2021, 54(5): 793-801.
32 Jain SD, Carrico CK, Bermanis I. 3-dimensional accuracy of dynamic navigation technology in locating calcified canals[J]. J Endod, 2020, 46(6): 839-845.
33 Jain SD, Carrico CK, Bermanis I, et al. Intraosseous anesthesia using dynamic navigation technology[J]. J Endod, 2020, 46(12): 1894-1900.
34 田田, 张志宏, 刘红红. 牙种植动态导航配准方式对配准精度的影响[J]. 国际口腔医学杂志, 2020, 47(2): 196-201.
Tian T, Zhang ZH, Liu HH. Effects of different regi-stration methods on the accuracy of navigation regi-stration in dental implants[J]. Int J Stomatol, 2020, 47(2): 196-201.
35 Bulloch SE, Olsen RG, Bulloch B. Comparison of heat generation between internally guided (cannula-ted) single drill and traditional sequential drilling with and without a drill guide for dental implants[J]. Int J Oral Maxillofac Implants, 2012, 27(6): 1456-1460.
36 Gargallo-Albiol J, Barootchi S, Salomó-Coll O, et al. Advantages and disadvantages of implant navigation surgery. A systematic review[J]. Ann Anat, 2019, 225: 1-10.
37 Dianat O, Nosrat A, Tordik PA, et al. Accuracy and efficiency of a dynamic navigation system for loca-ting calcified canals[J]. J Endod, 2020, 46(11): 1719-1725.
38 Widmann G, Stoffner R, Bale R. Errors and error management in image-guided craniomaxillofacial su-rgery[J]. Oral Surg Oral Med Oral Pathol Oral Ra-diol Endod, 2009, 107(5): 701-715.
[1] 汤芝伟,高莺. 靶向牙髓显微外科技术的应用与进展[J]. 国际口腔医学杂志, 2022, 49(6): 678-683.
[2] 庞瑜,刘显,王了. 数字化导板在埋伏多生牙拔除中的应用[J]. 国际口腔医学杂志, 2022, 49(4): 448-452.
[3] 王奔,许喆桢,韦曦. 数字化微创技术在牙髓根尖周病学中的应用与进展[J]. 国际口腔医学杂志, 2021, 48(1): 110-118.
[4] 田田,张志宏,刘红红. 牙种植动态导航配准方式对配准精度的影响[J]. 国际口腔医学杂志, 2020, 47(2): 196-201.
[5] 张婷婷,胡建. 数字化导板与动态导航在口腔种植应用中的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 99-104.
[6] 吕晶, 凌均棨. 根管定位数字化导板的研究进展[J]. 国际口腔医学杂志, 2018, 45(2): 233-238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .