国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (2): 196-201.doi: 10.7518/gjkq.2020046

• 综述 • 上一篇    下一篇

牙种植动态导航配准方式对配准精度的影响

田田,张志宏(),刘红红   

  1. 安徽医科大学附属省立医院口腔医学中心 合肥 230001
  • 收稿日期:2019-05-23 修回日期:2019-07-29 出版日期:2020-03-01 发布日期:2020-03-12
  • 通讯作者: 张志宏 E-mail:zzhzqr@126.com
  • 作者简介:田田,硕士,Email: tiantian_666tian@163.com
  • 基金资助:
    2018年度“科大新医学”联合基金项目(WK9110000006)

Effects of different registration methods on the accuracy of navigation registration in dental implants

Tian Tian,Zhang Zhihong(),Liu Honghong   

  1. Stomatological Center of Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
  • Received:2019-05-23 Revised:2019-07-29 Online:2020-03-01 Published:2020-03-12
  • Contact: Zhihong Zhang E-mail:zzhzqr@126.com
  • Supported by:
    This study was supported by “New Medicine of University of Science and Technology” Joint Foundation of 2018(WK9110000006)

摘要:

牙种植动态导航系统(DNS)是一种利用精确的红外定位技术,通过对三维数字影像的可视化操作,最终实现三维影像和实际解剖位置的精确融合,实时追踪手术器械的牙种植手术辅助系统,适用于牙种植手术的术前规划和精确的术中引导。影响DNS精确性的关键因素是实际术区解剖结构与其虚拟三维数字影像的精确配准,而不同配准方式的适应证、配准特点和配准精度等各不相同。本文对临床所应用的配准方式,包括骨标记物配准、咬合夹板配准、U型管配准、面部框架式配准、解剖标志点配准及无标记点配准进行介绍,并对影响配准误差的因素进行总结,以便临床医生更好地了解不同配准方式的特点,减少配准误差,达到精准种植的效果。

关键词: 动态导航系统, 配准方式, 精度

Abstract:

The dynamic navigation system (DNS) is an auxiliary system for dental implant surgery that utilizes precise infrared positioning technology through the visualized operation of 3D digital images. The system is aimed at realizing the precise fusion of 3D images and actual anatomical positions and achieving the real-time tracking of surgical instruments. The DNS is suitable for preoperative planning and precise intraoperative guidance for dental implant surgery. The key factor that affects the accuracy of the DNS is the accurate registration of the actual anatomical structure of the operation area and its virtual 3D digital image. The indications, registration characteristics, and registration accuracies with different registration methods vary. The present work introduces the registration methods used in clinical practice, including bone marker registration, occlusal splint registration, U-tube registration, facial frame registration, anatomical mark registration, and unmarked registration. The factors affecting registration errors are also summarized to enable clinicians to effectively understand the characteristics and indications of different registration methods, reduce registration errors, and achieve accurate implantation.

Key words: dynamic navigation system, registration methods, accuracy

中图分类号: 

  • R783
[1] Sahota J, Bhatia A, Gupta M , et al. Reliability of or- thopantomography and cone-beam computed tomo-graphy in presurgical implant planning: a clinical study[J]. J Contemp Dent Pract, 2017,18(8):665-669.
[2] Alawaji Y, MacDonald DS, Giannelis G , et al. Opti-mization of cone beam computed tomography image quality in implant dentistry[J]. Clin Exp Dent Res, 2018,4(6):268-278.
[3] Abdel-Wahed NA, Bahammam MA . Cone beam CT- based preoperative volumetric estimation of bone graft required for lateral window sinus augmentation, compared with intraoperative findings: a pilot study[J]. Open Dent J, 2018,12:820-826.
[4] Albiero AM, Benato R, Momic S , et al. Implementa-tion of computer-guided implant planning using di-gital scanning technology for restorations supported by conical abutments: a dental technique[J]. J Pros-thet Dent, 2018,119(5):720-726.
[5] Cristache CM, Gurbanescu S . Accuracy evaluation of a stereolithographic surgical template for dental implant insertion using 3D superimposition protocol[J]. Int J Dent, 2017: 4292081.
[6] Brandt J, Brenner M, Lauer HC , et al. Accuracy of a template-guided implant surgery system with a CAD/CAM-based measurement method: an in vitro study[J]. Int J Oral Maxillofac Implants, 2018,33(2):328-334.
[7] Stefanelli LV, DeGroot BS, Lipton DI , et al. Accuracy of a dynamic dental implant navigation system in a private practice[J]. Int J Oral Maxillofac Implants, 2019,34(1):205-213.
[8] Chen ZZ, Li JY, Sinjab K , et al. Accuracy of flapless immediate implant placement in anterior maxilla using computer-assisted versus freehand surgery: a cadaver study[J]. Clin Oral Implants Res, 2018,29(12):1186-1194.
[9] Chen CK, Yuh DY, Huang RY , et al. Accuracy of implant placement with a navigation system, a la-boratory guide, and freehand drilling[J]. Int J Oral Maxillofac Implants, 2018,33(6):1213-1218.
[10] Hung K, Huang W, Wang F , et al. Real-time surgical navigation system for the placement of zygomatic implants with severe bone deficiency[J]. Int J Oral Maxillofac Implants, 2016,31(6):1444-1449.
[11] Eggers G, Mühling J, Marmulla R . Image-to-patient registration techniques in head surgery[J]. Int J Oral Maxillofac Surg, 2006,35(12):1081-1095.
[12] Luebbers HT, Messmer P, Obwegeser JA , et al. Comparison of different registration methods for surgical navigation in cranio-maxillofacial surgery[J]. J Craniomaxillofac Surg, 2008,36(2):109-116.
[13] Hung KF, Wang F, Wang HW , et al. Accuracy of a real-time surgical navigation system for the place-ment of quad zygomatic implants in the severe atro-phic maxilla: a pilot clinical study[J]. Clin Implant Dent Relat Res, 2017,19(3):458-465.
[14] Wang F, Bornstein MM, Hung K , et al. Application of real-time surgical navigation for zygomatic im-plant insertion in patients with severely atrophic maxilla[J]. J Oral Maxillofac Surg, 2018,76(1):80-87.
[15] Fan S, Hung K, Bornstein MM , et al. The effect of the configurations of fiducial mark[J]. Int J Oral Maxillofac Implants, 2019,34(1):85-90.
[16] Watzinger F, Birkfellner W, Wanschitz F , et al. Place-ment of endosteal implants in the zygoma after ma-xillectomy: a Cadaver study using surgical navigation[J]. Plast Reconstr Surg, 2001,107(3):659-667.
[17] Xiaojun C, Ming Y, Yanping L , et al. Image guided oral implantology and its application in the place-ment of zygoma implants[J]. Comput Methods Pro-grams Biomed, 2009,93(2):162-173.
[18] Widmann G, Zangerl A, Schullian P , et al. Do image modality and registration method influence the ac-curacy of craniofacial navigation[J]. J Oral Maxil-lofac Surg, 2012,70(9):2165-2173.
[19] Eggers G, Mühling J . Template-based registration for image-guided skull base surgery[J]. Otolaryngol Head Neck Surg, 2007,136(6):907-913.
[20] Venosta D, Sun Y, Matthews F , et al. Evaluation of two dental registration-splint techniques for surgical navigation in cranio-maxillofacial surgery[J]. J Craniomaxillofac Surg, 2014,42(5):448-453.
[21] Emery RW, Merritt SA, Lank K , et al. Accuracy of dynamic navigation for dental implant placement-model-based evaluation[J]. J Oral Implantol, 2016,42(5):399-405.
[22] Block MS, Emery RW, Lank K , et al. Implant place-ment accuracy using dynamic navigation[J]. Int J Oral Maxillofac Implants, 2017,32(1):92-99.
[23] Block MS, Emery RW, Cullum DR , et al. Implant placement is more accurate using dynamic navi-gation[J]. J Oral Maxillofac Surg, 2017,75(7):1377-1386.
[24] Jorba-García A, Figueiredo R, González-Barnadas A , et al. Accuracy and the role of experience in dynamic computer guided dental implant surgery: an in-vitro study[J]. Med Oral Patol Oral Cir Bucal, 2019,24(1):e76-e83.
[25] Widmann G, Stoffner R, Schullian P , et al. Com-parison of the accuracy of invasive and noninvasive registration methods for image-guided oral implant surgery[J]. Int J Oral Maxillofac Implants, 2010,25(3):491-498.
[26] Sun Y, Luebbers HT, Agbaje JO , et al. Validation of anatomical landmarks-based registration for image-guided surgery: an in-vitro study[J]. J Craniomaxil-lofac Surg, 2013,41(6):522-526.
[27] Clements LW, Collins JA, Weis JA , et al. Evaluation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ul-trasound[J]. J Med Imaging (Bellingham), 2016,3(1):015003.
[28] Troitzsch D, Hoffmann J, Dammann F , et al. Re-gistration using three-dimensional Laser surface scanning for navigation in oral and craniomaxillofacial surgery[J]. Zentralbl Chir, 2003,128(7):551-556.
[29] Hoffmann J, Westendorff C, Leitner C , et al. Vali-dation of 3D-Laser surface registration for image-guided cranio-maxillofacial surgery[J]. J Cranio-maxillofac Surg, 2005,33(1):13-18.
[30] Raabe A, Krishnan R, Wolff R , et al. Laser surface scanning for patient registration in intracranial image-guided surgery[J]. Neurosurgery, 2002, 50(4): 797-801, 802-803.
[31] Schlaier J, Warnat J, Brawanski A . Registration accuracy and practicability of laser-directed surface matching[J]. Comput Aided Surg, 2002,7(5):284-290.
[32] Lübbers HT, Matthews F, Zemann W , et al. Registra-tion for computer-navigated surgery in edentulous patients: a problem-based decision concept[J]. J Craniomaxillofac Surg, 2011,39(6):453-458.
[33] Ohba S, Yoshimura H, Ishimaru K , et al. Application of a real-time three-dimensional navigation system to various oral and maxillofacial surgical procedures[J]. Odontology, 2015,103(3):360-366.
[34] Fan YF, Xu XF, Wang MN . A surface-based spatial registration method based on sense three-dimensional scanner[J]. J Craniofac Surg, 2017,28(1):157-160.
[35] Marmulla R, Lüth T, Mühling J , et al. Automated laser registration in image-guided surgery: evaluation of the correlation between laser scan resolution and navigation accuracy[J]. Int J Oral Maxillofac Surg, 2004,33(7):642-648.
[36] Jakubovic R, Guha D, Gupta S , et al. High speed, high density intraoperative 3D optical topographical imaging with efficient registration to MRI and CT for craniospinal surgical navigation[J]. Sci Rep, 2018,8(1):14894.
[37] Wang MY, Maurer CR Jr, Fitzpatrick JM , et al. An automatic technique for finding and localizing ex-ternally attached markers in CT and MR volume images of the head[J]. IEEE Trans Biomed Eng, 1996,43(6):627-637.
[38] Woerdeman PA, Willems PW, Noordmans HJ , et al. The effect of repetitive manual fiducial localization on target localization in image space[J]. Neurosurgery, 2007, 60(2 Suppl 1): ONS100-ONS103; discussion ONS103-ONS104.
[39] Qin CX, Cao ZG, Fan SC , et al. An oral and maxillo-facial navigation system for implant placement with automatic identification of fiducial points[J]. Int J Comput Assist Radiol Surg, 2019,14(2):281-289.
[40] Du Y, Wangrao, Liu L , et al. Quantification of image artifacts from navigation markers in dynamic guided implant surgery and the effect on registration per-formance in different clinical scenarios[J]. Int J Oral Maxillofac Implants, 2019,34(3):726-736.
[41] Kim S, Kazanzides P . Fiducial-based registration with a touchable region model[J]. Int J Comput Assist Radiol Surg, 2017,12(2):277-289.
[42] Suenaga H, Hoang Tran H, Liao H , et al. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study[J]. Int J Oral Sci, 2013,5(2):98-102.
[43] Ma LF, Jiang WP, Zhang BY , et al. Augmented rea-lity surgical navigation with accurate CBCT-patient registration for dental implant placement[J]. Med Biol Eng Comput, 2019,57(1):47-57.
[44] Jiang WP, Ma LF, Zhang BY , et al. Evaluation of the 3D augmented reality-guided intraoperative posi-tioning of dental implants in edentulous mandibular models[J]. Int J Oral Maxillofac Implants, 2018,33(6):1219-1228.
[1] 李小洁, 童徐, 李中杰, 孟玉坤. 包埋材料热膨胀率和凝固膨胀率变化对铸件铸造精度影响的研究[J]. 国际口腔医学杂志, 2009, 36(5): 531-534.
[2] 王剑,万乾炳. 印模精度的影响因素[J]. 国际口腔医学杂志, 2005, 32(04): 317-319.
[3] 黄艳. 活动代型定位器在口腔修复中的应用[J]. 国际口腔医学杂志, 1999, 26(04): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[7] 薛莉,王少安. 骨替代材料在口腔种植中的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[8] 黄君斐,王敏. 全瓷修复体颜色效果的影响因素[J]. 国际口腔医学杂志, 2008, 35(S1): .
[9] 赵熠1 蔡育2综述 王贻宁1审校. 破骨细胞前体细胞的研究进展[J]. 国际口腔医学杂志, 2011, 38(6): 670 -673 .
[10] 丁浩. T1~T3N0舌癌是否需要清扫Ⅳ区[J]. 国际口腔医学杂志, 2002, 29(02): .