国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (6): 654-659.doi: 10.7518/gjkq.2017.06.006

• 微生物专栏 • 上一篇    下一篇

不同蔗糖浓度下外源性右旋糖酐酶与氟化钠对粘放线菌生物膜的影响

房宏志1, 田媛媛1,2, 喻譞2,3, 杨英明4, 杨惠5, 胡涛4   

  1. 1.成都市第三人民医院口腔科 成都 610031;
    2.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心,四川大学华西口腔医院牙体牙髓病科 成都 610041;
    3.宁波市鄞州人民医院口腔科 宁波 315040;
    4.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心,四川大学华西口腔医院预防口腔科 成都 610041;
    5.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心,四川大学华西口腔医院全科门诊 成都 610041
  • 收稿日期:2016-12-29 修回日期:2017-08-21 出版日期:2017-11-01 发布日期:2017-11-01
  • 通讯作者: 杨惠,讲师,博士,Email:yanghui09@scu.edu.cn
  • 作者简介:房宏志,副主任医师,硕士,Email:1127958575@qq.com
  • 基金资助:
    国家自然科学基金(81400507); 四川省科技厅应用基础研究项目(2013JY0164)

The influence of exogenous dextranase and sodium fluoride on biofilm of Actinomyces viscosus under different sucrose concentration conditions

Fang Hongzhi1, Tian Yuanyuan1,2, Yu Xuan2,3, Yang Yingming4, Yang Hui5, Hu Tao4   

  1. 1. Dept. of Stomatology, The Third People’s Hospital of Chengdu, Chengdu 610031, China;
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
    3. Dept. of Stomatology, Ningbo Yinzhou People’s Hospital, Ningbo 315040, China;
    4. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
    5. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2016-12-29 Revised:2017-08-21 Online:2017-11-01 Published:2017-11-01
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81400507) and Applied Basic Re-search Project of Sichuan Provincial Science and Technology Department(2013JY0164).

摘要: 目的 探索在不同蔗糖浓度条件下,外源性右旋糖酐酶(Dex)与氟化钠(NaF)对粘放线菌生物膜的影响。方法 利用结晶紫染色法测定粘放线菌生物膜量。用二甲氧唑黄(XTT)法检测细菌生物膜的活性。用pH仪测定细菌培养初始液体培养基的pH值(pH1)及培养18 h后培养基的pH值(pH2),并计算ΔpH(pH1-pH2)。结果 在不同蔗糖浓度条件下,各组细菌生物膜量先随蔗糖浓度升高而增加,至蔗糖质量分数为0.5%时到达峰值,继而随浓度升高生物膜量减少;在蔗糖质量分数为1%时,Dex+NaF组生物膜量明显小于Dex组或NaF组。随着蔗糖浓度的增加,各组生物膜活性有降低趋势。相同蔗糖浓度下,Dex组生物膜活性与对照组相似(P>0.05);NaF组生物膜活性较之对照组有轻度增加(P<0.05)。随着蔗糖浓度增加,各组ΔpH变化趋势为先增大后减小;在蔗糖质量分数为0.25%~2%时,Dex和NaF单独使用及联合使用时均能抑制细菌产酸。结论 在本实验条件下,Dex和NaF对细菌生物膜的形成、生物膜活性及细菌产酸的作用受蔗糖浓度的影响。在蔗糖质量分数为1%时,Dex和NaF联用对粘放线菌生物膜形成的抑制作用表现出协同作用。在蔗糖质量分数为2%时,Dex和NaF能协同抑制细菌生物膜产酸。

关键词: 右旋糖酐酶, 氟化物, 生物膜, 蔗糖, 粘放线菌

Abstract: Objective To explore the impact of exogenous dextranase(Dex) and sodium fluoride(NaF) on the biomass, biofilm vitality and acid production of Actinomyces viscosus in different sucrose concentration substrate. Methods Crystal violet staining was used to quantify the biomass of A. viscosus in each group. 2,3 bis(2 methoxy 4 nitro 5 sulfophenyl) 5 [(phenylamino)carbonyl] 2H tetrazolium hydroxide(XTT) assay was used to detect the vitality of the bacterial biofilms. pH electrode was applied to measure the pH values of the initial(pH1) and the 18 h liquid culture medium(pH2), and then the ΔpH(pH1-pH2) values was calculated. Results Under different sucrose concentration conditions, the bacterial biomass increased with the increase of sucrose concentration, and reached the peak at a sucrose mass fraction of 0.5%, and then decreased with the increase of sucrose concentration. In the 1% sucrose mass fraction groups, the bacterial biomass formed in the Dex+NaF group was significantly less than in the Dex or NaF group. In all groups, the bacterial vitality was decreased along with the increased sucrose concentration. Under the same sucrose concentration, the bacteria vitality of the Dex group was similar to that of the control group(P>0.05), and there was a slight increase in the bacteria vitality in the NaF group compared with the control group(P<0.05). With the increase of sucrose concentration, ΔpH changes were first increased and then decreased. The single or combined use of NaF and Dex could inhibit the acid production of A. viscosus under the sucrose mass fraction ranged from 0.25% to 2%. Conclusion Sucrose concentration was one of the factors that can influence the effect of Dex and NaF, both single and combination, on the bacterial biomass, biofilm vitality and acid production. The inhibitory effect of the combined use of Dex and NaF on the formation of bacterial biofilm showed a synergistic effect at the sucrose mass fraction of 1%. Dex and NaF displayed synergistic effect on acid production at the sucrose mass fraction of 2%.

Key words: dextranase, sodium fluoride, biofilm, sucrose, Actinomyces viscosus

中图分类号: 

  • R37
[1] Yang YM, Jiang D, Qiu YX, et al. Effects of com-bined exogenous dextranase and sodium fluoride on Streptococcus mutans 25175 monospecies biofilms [J]. Am J Dent, 2013, 26(5):239-243.
[2] 田媛媛, 喻譞, 房宏志, 等. 外源性右旋糖酐酶和氟化钠对粘性放线菌生物膜的影响[J]. 口腔疾病防治, 2016, 24(11):640-644.
Tian YY, Yu X, Fang HZ, et al. Effects of exogenous dextranase and sodium fluoride on Actinomyces viscosus biofilm[J]. J Prev Treat Stomatol Dis, 2016, 24(11):640-644.
[3] Braúna AP, Abreu MH, Resende VL, et al. Risk factors for dental caries in children with develop-mental disabilities[J]. Braz Oral Res, 2016, 30(1): 0079.
[4] Edwardsson S, Krasse B. Human streptococci and caries in hamsters fed diets with sucrose or glucose [J]. Arch Oral Biol, 1967, 12(8):1015-1016.
[5] Salli KM, Forssten SD, Lahtinen SJ, et al. Influence of sucrose and xylitol on an early Streptococcus mutans biofilm in a dental simulator[J]. Arch Oral Biol, 2016, 70:39-46.
[6] Cury JA, Rebello MA, Del Bel Cury AA. In situ relationship between sucrose exposure and the com-position of dental plaque[J]. Caries Res, 1997, 31(5): 356-360.
[7] Aires CP, Tabchoury CP, Del Bel Cury AA, et al. Effect of sucrose concentration on dental biofilm formed in situ and on enamel demineralization[J]. Caries Res, 2006, 40(1):28-32.
[8] Díaz-Garrido N, Lozano C, Giacaman RA. Fre-quency of sucrose exposure on the cariogenicity of a biofilm-caries model[J]. Eur J Dent, 2016, 10(3): 345-350.
[9] Peeters E, Nelis HJ, Coenye T. Comparison of mul-tiple methods for quantification of microbial biofilms grown in microtiter plates[J]. J Microbiol Methods, 2008, 72(2):157-165.
[10] Pierce CG, Uppuluri P, Tristan AR, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing[J]. Nat Protoc, 2008, 3(9):1494-1500.
[11] Cai JN, Jung JE, Dang MH, et al. Functional rela-tionship between sucrose and a cariogenic biofilm formation[J]. PLoS One, 2016, 11(6):e0157184.
[12] Koo H, Sheng J, Nguyen PT, et al. Co-operative inhibition by fluoride and zinc of glucosyl trans-ferase production and polysaccharide synthesis by mutans streptococci in suspension cultures and biofilms[J]. FEMS Microbiol Lett, 2006, 254(1): 134-140.
[13] Schachtele CF, Staat RH, Harlander SK. Dextranases from oral bacteria: inhibition of water-insoluble glucan production and adherence to smooth surfaces by Streptococcus mutans [J]. Infect Immun, 1975, 12(2):309-317.
[14] Walker GJ, Pulkownik A, Morrey-Jones JG. Meta-bolism of the polysaccharides of human dental plaque: release of dextranase in batch cultures of Streptococcus mutans [J]. J Gen Microbiol, 1981, 127(1):201-208.
[15] Gabrielson J, Hart M, Jarelöv A, et al. Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates[J]. J Microbiol Methods, 2002, 50(1):63-73.
[16] Pettit RK, Weber CA, Kean MJ, et al. Microplate alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing[J]. Antimicrob Agents Chemother, 2005, 49(7):2612-2617.
[17] Pandit S, Kim JE, Jung KH, et al. Effect of sodium fluoride on the virulence factors and composition of Streptococcus mutans biofilms[J]. Arch Oral Biol, 2011, 56(7):643-649.
[18] Georgios A, Vassiliki T, Sotirios K. Acidogenicity and acidurance of dental plaque and saliva sediment from adults in relation to caries activity and chlo-rhexidine exposure[J]. J Oral Microbiol, 2015, 7: 26197.
[19] Hamilton IR, Ellwood DC. Carbohydrate metabolism by Actinomyces viscosus growing in continuous culture[J]. Infect Immun, 1983, 42(1):19-26.
[20] Hamilton IR. Biochemical effects of fluoride on oral bacteria[J]. J Dent Res, 1990, 69(Spec N):660-667.
[1] 杨子,侯本祥. 持续性根尖周炎根管内外生物膜特性的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 238-243.
[2] 刘诗雨, 田宓, 石黎冉, 潘韦霖, 王一尧, 李明云. 尼古丁和美卡拉明对牙周致病微生物的影响[J]. 国际口腔医学杂志, 2017, 44(4): 421-425.
[3] 陆笑, 翁春辉, 王劲茗, 刘少娟, 刘芹, 林珊. luxS/AI-2密度感应对缓症链球菌生物膜致病力的影响[J]. 国际口腔医学杂志, 2017, 44(4): 411-420.
[4] 周双双 郑欣 周学东 徐欣. 菌斑生物膜产碱代谢与龋病[J]. 国际口腔医学杂志, 2016, 43(5): 573-577.
[5] 朱宸佑,邓佳,曹钰彬,刘孟轲,杨醒眉. 生物膜在位点保护中的应用[J]. 国际口腔医学杂志, 2016, 43(2): 187-189.
[6] 冯汝舟 刘娟 吕长海. 氟化物在儿童和青少年龋病防治中的应用[J]. 国际口腔医学杂志, 2016, 43(1): 118-.
[7] 刘奕1 费伟1 王丽娜2 张思宇3 王艳君1 吴红崑4. 十肽对变异链球菌生物膜生长和结构影响的实验研究[J]. 国际口腔医学杂志, 2015, 42(4): 401-405.
[8] 欧美珍 凌均棨. 多胺对细菌生物膜作用的多样性[J]. 国际口腔医学杂志, 2015, 42(3): 361-363.
[9] 王浩浩 程磊. 口腔修复材料界面对菌斑生物膜的影响[J]. 国际口腔医学杂志, 2015, 42(3): 352-356.
[10] 欧美珍,凌均棨. D-型氨基酸对细菌生物膜解离分散的作用[J]. 国际口腔医学杂志, 2015, 42(2): 203-205.
[11] 张剑英 凌均棨. 表面蛋白抗原P及其在变异链球菌生物膜形成中的作用[J]. 国际口腔医学杂志, 2015, 42(1): 111-113.
[12] 耿奉雪 潘亚萍. 生物膜中不同定植阶段细菌间的相互作用及模型[J]. 国际口腔医学杂志, 2014, 41(4): 431-435.
[13] 李红 侯本祥. 持续性根尖周炎根外生物膜的研究进展[J]. 国际口腔医学杂志, 2013, 40(6): 754-757.
[14] 薛红蕾1 杨德琴2. 具核梭杆菌在牙菌斑生物膜中的作用[J]. 国际口腔医学杂志, 2013, 40(5): 657-660.
[15] 李欣忆 段丁瑜 徐屹. 生物膜和浮游状态下细菌的基因和蛋白质表达差异[J]. 国际口腔医学杂志, 2013, 40(5): 661-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[8] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[9] 王金涛 刘美娟 孙宏晨 欧阳喈. 牙槽嵴牵张成骨[J]. 国际口腔医学杂志, 2004, 31(02): 146 -148 .
[10] 黄维佳综述 平飞云审校. 涎腺黏膜相关淋巴组织淋巴瘤的研究进展[J]. 国际口腔医学杂志, 2009, 36(5): 577 -579 .