Int J Stomatol ›› 2024, Vol. 51 ›› Issue (4): 441-449.doi: 10.7518/gjkq.2024056
• Materials • Previous Articles Next Articles
Cheng Wu1(),Yichen Xu2,Qianbing Wan2(
)
CLC Number:
1 | Spitznagel FA, Boldt J, Gierthmuehlen PC. CAD/CAM ceramic restorative materials for natural teeth[J]. J Dent Res, 2018, 97(10): 1082-1091. |
2 | Venturini AB, Prochnow C, Pereira GKR, et al. Fatigue performance of adhesively cemented glass‑, hybrid- and resin-ceramic materials for CAD/CAM monolithic restorations[J]. Dent Mater, 2019, 35(4): 534-542. |
3 | Ionescu AC, Hahnel S, König A, et al. Resin composite blocks for dental CAD/CAM applications reduce biofilm formation in vitro [J]. Dent Mater, 2020, 36(5): 603-616. |
4 | Mainjot AK, Dupont NM, Oudkerk JC, et al. From artisanal to CAD-CAM blocks: state of the art of indirect composites[J]. J Dent Res, 2016, 95(5): 487-495. |
5 | Hampe R, Theelke B, Lümkemann N, et al. Fracture toughness analysis of ceramic and resin composite CAD/CAM material[J]. Oper Dent, 2019, 44(4): E190-E201. |
6 | Lima EL, Vieira WF Jr, do Amaral FLB, et al. In-fluence of universal adhesive system application strategies on the long-term bond strength to dentin of CAD-CAM restorative materials[J]. J Adhes Sci Technol, 2019, 33(24): 2696-2706. |
7 | Zhi L, Bortolotto T, Krejci I. Comparative in vitro wear resistance of CAD/CAM composite resin and ceramic materials[J]. J Prosthet Dent, 2016, 115(2): 199-202. |
8 | Cui BC, Li J, Wang HN, et al. Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration[J]. J Dent, 2017, 62: 91-97. |
9 | Kang LZ, Zhou Y, Lan JL, et al. Effect of resin composition on performance of polymer-infiltrated feldspar-network composites for dental restoration[J]. Dent Mater J, 2020, 39(5): 900-908. |
10 | Li J, Cui BC, Lin YH, et al. High strength and toughness in chromatic polymer-infiltrated zirconia ceramics[J]. Dent Mater, 2016, 32(12): 1555-1563. |
11 | Mironov RA, Georgiu IF, Solovev AА, et al. The effect of polymer concentration on thermophysical, structural and mechanical properties of siloxane-infiltrated silica ceramics[J]. Ceram Int, 2021, 47(7): 9888-9895. |
12 | Wang F, Guo JS, Li K, et al. High strength polymer/silicon nitride composites for dental restorations[J]. Dent Mater, 2019, 35(9): 1254-1263. |
13 | Wang YH, Luo SH, Dou YX, et al. Preparation and mechanical properties of polymer infiltrated feldspar ceramic for dental restoration materials[J]. J Polym Res, 2022, 29(11): 464. |
14 | He LH, Swain M. A novel polymer infiltrated ceramic dental material[J]. Dent Mater, 2011, 27(6): 527-534. |
15 | Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials [J]. Dent Mater, 2013, 29(4): 419-426. |
16 | Albero A, Pascual A, Camps I, et al. Comparative characterization of a novel CAD-CAM polymer-infiltrated-ceramic-network[J]. J Clin Exp Dent, 2015, 7(4): e495-e500. |
17 | Facenda JC, Borba M, Corazza PH. A literature review on the new polymer-infiltrated ceramic-network material (PICN) [J]. J Esthet Restor Dent, 2018, 30(4): 281-286. |
18 | Lauvahutanon S, Takahashi H, Shiozawa M, et al. Mechanical properties of composite resin blocks for CAD/CAM[J]. Dent Mater J, 2014, 33(5): 705-710. |
19 | Ramos NDEC, Campos TM, Paz IS, et al. Microstructure characterization and SCG of newly engineered dental ceramics[J]. Dent Mater, 2016, 32(7): 870-878. |
20 | Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials[J]. J Prosthet Dent, 2015, 114(4): 587-593. |
21 | Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material[J]. Dent Mater, 2014, 30(5): 564-569. |
22 | Coldea A, Swain MV, Thiel N. In-vitro strength de-gradation of dental ceramics and novel PICN mate-rial by sharp indentation[J]. J Mech Behav Biomed Mater, 2013, 26: 34-42. |
23 | Silva CS, Henriques B, Novaes de Oliveira AP, et al. Micro-scale abrasion and sliding wear of zirco-nium-lithium silicate glass-ceramic and polymer-infiltrated ceramic network used in dentistry[J]. Wear, 2020, 448/449: 203214. |
24 | Borrero-Lopez O, Guiberteau F, Zhang Y, et al. Wear of ceramic-based dental materials[J]. J Mech Behav Biomed Mater, 2019, 92: 144-151. |
25 | Homaei E, Farhangdoost K, Tsoi JKH, et al. Static and fatigue mechanical behavior of three dental CAD/CAM ceramics[J]. J Mech Behav Biomed Mater, 2016, 59: 304-313. |
26 | Lf G, Soares P, Werner A, et al. Fatigue performance of distinct CAD/CAM dental ceramics[J]. J Mech Behav Biomed Mater, 2020, 103: 103540. |
27 | Aboushelib MN, Elsafi MH. Survival of resin infiltrated ceramics under influence of fatigue[J]. Dent Mater, 2016, 32(4): 529-534. |
28 | Elraggal A, Afifi RR, Alamoush RA, et al. Effect of acidic media on flexural strength and fatigue of CAD-CAM dental materials[J]. Dent Mater, 2023, 39(1): 57-69. |
29 | Leung BT, Tsoi JK, Matinlinna JP, et al. Comparison of mechanical properties of three machinable ceramics with an experimental fluorophlogopite glass ceramic[J]. J Prosthet Dent, 2015, 114(3): 440-446. |
30 | Takeshige F, Kawakami Y, Hayashi M, et al. Fatigue behavior of resin composites in aqueous environments[J]. Dent Mater, 2007, 23(7): 893-899. |
31 | Coldea A, Fischer J, Swain MV, et al. Damage tole-rance of indirect restorative materials (including PICN) after simulated bur adjustments[J]. Dent Mater, 2015, 31(6): 684-694. |
32 | Carvalho AO, Bruzi G, Giannini M, et al. Fatigue resistance of CAD/CAM complete crowns with a simplified cementation process[J]. J Prosthet Dent, 2014, 111(4): 310-317. |
33 | Belli R, Geinzer E, Muschweck A, et al. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations[J]. Dent Mater, 2014, 30(4): 424-432. |
34 | Elsaka SE. Bond strength of novel CAD/CAM restorative materials to self-adhesive resin cement: the effect of surface treatments[J]. J Adhes Dent, 2014, 16(6): 531-540. |
35 | Flury S, Schmidt SZ, Peutzfeldt A, et al. Dentin bond strength of two resin-ceramic computer-aided design/computer-aided manufacturing (CAD/CAM) materials and five cements after six months storage[J]. Dent Mater J, 2016, 35(5): 728-735. |
36 | Ustun S, Ayaz EA. Effect of different cement systems and aging on the bond strength of chairside CAD-CAM ceramics[J]. J Prosthet Dent, 2021, 125(2): 334-339. |
37 | Schwenter J, Schmidli F, Weiger R, et al. Adhesive bonding to polymer infiltrated ceramic[J]. Dent Mater J, 2016, 35(5): 796-802. |
38 | 董林林. 不同酸蚀处理对CAD/CAM可切削陶瓷表面形貌及内部微观结构的影响[D]. 长春: 吉林大学, 2019. |
Dong LL. Effect of different etching treatments on surface morphology and internal microstructure of CAD/CAM etchable ceramics[D]. Changchun: Jilin University, 2019. | |
39 | Barutcigil K, Barutcigil Ç, Kul E, et al. Effect of different surface treatments on bond strength of resin cement to a CAD/CAM restorative material[J]. J Prosthodont, 2019, 28(1): 71-78. |
40 | Campos F, Almeida CS, Rippe MP, et al. Resin bonding to a hybrid ceramic: effects of surface treatments and aging[J]. Oper Dent, 2016, 41(2): 171-178. |
41 | Chuenjit P, Suzuki M, Shinkai K. Effect of various surface treatments on the bond strength of resin lu-ting agent and the surface roughness and surface energy of CAD/CAM materials[J]. Dent Mater J, 2021, 40(1): 16-25. |
42 | Lise DP, van Ende A, De Munck J, et al. Microtensile bond strength of composite cement to novel CAD/CAM materials as a function of surface treatment and aging[J]. Oper Dent, 2017, 42(1): 73-81. |
43 | Maawadh AM, Almohareb T, Al-Hamdan RS, et al. Repair strength and surface topography of lithium disilicate and hybrid resin ceramics with LLLT and photodynamic therapy in comparison to hydrofluo-ric acid[J]. J Appl Biomater Funct Mater, 2020, 18: 2280800020966938. |
44 | Peumans M, Valjakova EB, De Munck J, et al. Bonding effectiveness of luting composites to diffe-rent CAD/CAM materials[J]. J Adhes Dent, 2016, 18(4): 289-302. |
45 | Silva PNFD, Martinelli-Lobo CM, Bottino MA, et al. Bond strength between a polymer-infiltrated ceramic network and a composite for repair: effect of several ceramic surface treatments[J]. Braz Oral Res, 2018, 32: e28. |
46 | Bello YD, di Domenico MB, Magro LD, et al. Bond strength between composite repair and polymer-infiltrated ceramic-network material: effect of diffe-rent surface treatments[J]. J Esthet Restor Dent, 2019, 31(3): 275-279. |
47 | Lee Y, Kim JH, Woo JS, et al. Analysis of self-adhesive resin cement microshear bond strength on leucite-reinforced glass-ceramic with/without pure silane primer or universal adhesive surface treatment[J]. Biomed Res Int, 2015, 2015: 361893. |
48 | Stawarczyk B, Awad D, Ilie N. Blue-light transmittance of esthetic monolithic CAD/CAM materials with respect to their composition, thickness, and cu-ring conditions[J]. Oper Dent, 2016, 41(5): 531-540. |
49 | Pulgar R, Lucena C, Espinar C, et al. Optical and colorimetric evaluation of a multi-color polymer-infiltrated ceramic-network material[J]. Dent Mater, 2019, 35(7): e131-e139. |
50 | Duran İ, Kaleli N, Ural Ç, et al. Evaluation of the light transmission of chairside polymer infiltrated hybrid ceramics in different shades and thicknesses[J]. J Appl Biomater Funct Mater, 2019, 17(1): 22808-00018807109. |
51 | Barutcigil K, Büyükkaplan UŞ. The effect of thickness and translucency of polymer-infiltrated cera-mic-network material on degree of conversion of resin cements[J]. J Adv Prosthodont, 2020, 12(2): 61-66. |
52 | Alp G, Subaşı MG, Seghi RR, et al. Effect of sha-ding technique and thickness on color stability and translucency of new generation translucent zirconia[J]. J Dent, 2018, 73: 19-23. |
53 | An JS, Son HH, Qadeer S, et al. The influence of a continuous increase in thickness of opaque-shade composite resin on masking ability and translucency[J]. Acta Odontol Scand, 2013, 71(1): 120-129. |
54 | Bilgin MS, Erdem A, Tanrıver M. CAD/CAM endocrown fabrication from a polymer-infiltrated cera-mic network block for primary molar: a case report[J]. J Clin Pediatr Dent, 2016, 40(4): 264-268. |
55 | Pop-Ciutrila IS, Ghinea R, Dudea D, et al. The effects of thickness and shade on translucency para-meters of contemporary, esthetic dental ceramics[J]. J Esthet Restor Dent, 2021, 33(5): 795-806. |
56 | Shiraishi T, Watanabe I. Thickness dependence of light transmittance, translucency and opalescence of a ceria-stabilized zirconia/alumina nanocomposite for dental applications[J]. Dent Mater, 2016, 32(5): 660-667. |
57 | Passos SP, Kimpara ET, Bottino MA, et al. Effect of ceramic shade on the degree of conversion of a dual-cure resin cement analyzed by FTIR[J]. Dent Mater, 2013, 29(3): 317-323. |
58 | Alharbi N, Teerakanok S, Satterthwaite JD, et al. Quantitative nano-mechanical mapping AFM-based method for elastic modulus and surface roughness measurements of model polymer infiltrated ceramics[J]. Dent Mater, 2022, 38(6): 935-945. |
59 | Egilmez F, Ergun G, Cekic-Nagas I, et al. Comparative color and surface parameters of current esthetic restorative CAD/CAM materials[J]. J Adv Prosthodont, 2018, 10(1): 32-42. |
60 | Alharbi A, Ardu S, Bortolotto T, et al. In-office bleaching efficacy on stain removal from CAD/CAM and direct resin composite materials[J]. J Esthet Restor Dent, 2018, 30(1): 51-58. |
61 | Karakaya İ, Cengiz E. Effect of 2 bleaching agents with a content of high concentrated hydrogen pero-xide on stained 2 CAD/CAM blocks and a nanohybrid composite resin: an AFM evaluation[J]. Biomed Res Int, 2017, 2017: 6347145. |
62 | Seyidaliyeva A, Rues S, Evagorou Z, et al. Color stability of polymer-infiltrated-ceramics compared with lithium disilicate ceramics and composite[J]. J Esthet Restor Dent, 2020, 32(1): 43-50. |
63 | Karaokutan I, Yilmaz Savas T, Aykent F, et al. Color stability of CAD/CAM fabricated inlays after acce-lerated artificial aging[J]. J Prosthodont, 2016, 25(6): 472-477. |
64 | Sasany R, Eyüboğlu TF, Özcan M. Long-term effect of nanosized boric acid powder on optical properties of polymer infiltrated ceramic CAD-CAM material[J]. Coatings, 2023, 13(3): 483. |
65 | Spitznagel FA, Scholz KJ, Vach K, et al. Monolithic polymer-infiltrated ceramic network CAD/CAM single crowns: three-year mid-term results of a prospective clinical study[J]. Int J Prosthodont, 2020, 33(2): 160-168. |
66 | Chirumamilla G, Goldstein CE, Lawson NC. A 2-year retrospective clinical study of enamic crowns performed in a private practice setting[J]. J Esthet Restor Dent, 2016, 28(4): 231-237. |
67 | Spitznagel FA, Scholz KJ, Strub JR, et al. Polymer-infiltrated ceramic CAD/CAM inlays and partial coverage restorations: 3-year results of a prospective clinical study over 5 years[J]. Clin Oral Investig, 2018, 22(5): 1973-1983. |
68 | Lu T, Peng L, Xiong F, et al. A 3-year clinical eva-luation of endodontically treated posterior teeth restored with two different materials using the CEREC AC chair-side system[J]. J Prosthet Dent, 2018, 119(3): 363-368. |
69 | Attia YS, Sherif RM, Zaghloul HH. Survival of Hybrid Laminate Veneers using two different tooth preparation techniques: randomized clinical trial[J]. Braz Dent J, 2021, 32(6): 36-53. |
70 | Oudkerk J, Eldafrawy M, Bekaert S, et al. The one-step no-prep approach for full-mouth rehabilitation of worn dentition using PICN CAD-CAM restorations: 2-yr results of a prospective clinical study[J]. J Dent, 2020, 92: 103245. |
[1] | Luo Qiyue,Liu Yeyu,Luo Yilin,Man Yi.. Centric relation centered, facial esthetically and prosthetically driven digital workflow for edentulism implant rehabilitation: a clinical report [J]. Int J Stomatol, 2022, 49(4): 426-431. |
[2] | Li Yanling, Wang Jinming.. Application of computer-aided design and computer-aided manufacturing of milled titanium framework in the implant-support rehabilitation of edentulous patients [J]. Inter J Stomatol, 2017, 44(3): 344-349. |
[3] | Yang Weixiang, Li Yan. . The application status and research progress on mouthguard [J]. Inter J Stomatol, 2013, 40(4): 486-488. |
|