国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (1): 82-91.doi: 10.7518/gjkq.2025017

• 综述 • 上一篇    下一篇

口腔局部麻醉药治疗颌面部疼痛的研究进展

马博1(),柯博文2,梁新华1()   

  1. 1.口腔疾病防治全国重点实验室;国家口腔医学中心 国家口腔疾病临床医学研究中心;四川大学华西口腔医院牙槽外科 成都 610041
    2.四川大学华西医院 麻醉转化医学国家地方联合工程研究中心麻醉与危重急救研究室 成都 610041
  • 收稿日期:2024-05-15 修回日期:2024-09-30 出版日期:2025-01-01 发布日期:2025-01-11
  • 通讯作者: 梁新华
  • 作者简介:马博,住院医师,硕士,Email:320143643@qq.com
  • 基金资助:
    四川大学华西口腔医院交叉学科创新项目(RD-03-202004)

Progress in research on oral local anesthetics in the treatment of maxillofacial pain

Bo Ma1(),Bowen Ke2,Xinhua Liang1()   

  1. 1.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Alveolar Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2.Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
  • Received:2024-05-15 Revised:2024-09-30 Online:2025-01-01 Published:2025-01-11
  • Contact: Xinhua Liang
  • Supported by:
    Research and Develop Program, West China Hospital of Stomatology, Sichuan University(RD-03-202004)

摘要:

口腔颌面部疼痛严重影响患者的生活质量,局部麻醉药在颌面部疼痛相关疾病的临床诊疗中占据重要地位。随着局部麻醉药作用机制的理论研究不断发展,疼痛治疗的临床需求逐步增加,新型口腔局部麻醉药的开发成为研究热点。本文讨论了局部麻醉药物治疗颌面部疼痛机制的研究进展,结合临床常见的多种疼痛相关疾病,阐述了局部麻醉药的临床应用与作用机制。此外,本文对口腔局部麻醉新药的新剂型和药物递送方式开发进行总结,以期为未来新型口腔局部麻醉药的开发提供依据。

关键词: 口腔局部麻醉药, 颌面部疼痛, 机制研究, 临床应用

Abstract:

Oral and maxillofacial pain considerably affects the quality of life of patients. Local anesthetics play a crucial role in the clinical diagnosis and treatment of pain-related maxillofacial disorders. Along with continuous advancements in theoretical research on the mechanism of local anesthetics, the clinical demand for pain management has gradually escalated, and the development of novel oral local anesthetics has emerged as a research focus. In this article, progress in research into the mechanism of local anesthetics is elaborated, and the clinical application and mechanism of action of local anesthetics and their role in the treatment of various common clinical pain-related diseases were explored. Addi-tionally, the development of novel drugs, new dosage forms, and new drug delivery methods for oral local anesthetics is reviewed. The aim was to provide insights into the mechanism and development of novel oral local anesthetics.

Key words: oral local anesthetics, maxillofacial pain, mechanism study, clinical application

中图分类号: 

  • R782.05+4

图1

VGSC/Nav拓扑结构图(a)及三维示意图(b)"

表 1

钙离子通道的分型及组织分布特征"

蛋白质分类分型组织分布
Cav1.1—Cav1.4L骨骼肌、心肌;心脏窦房结、耳蜗内毛细胞;视网膜突触
Cav2.1P/Q中枢突触与神经-肌接头
Cav2.2N中枢和外周突触
Cav2.3R中枢和外周突触(递质异步释放)
Cav3.1— Cav3.3T多种可兴奋细胞
1 Raja SN, Carr DB, Cohen M, et al. The revised international association for the study of pain definition of pain: concepts, challenges, and compromises[J]. Pain, 2020, 161(9): 1976-1982.
2 Chung MK, Wang S, Oh SL, et al. Acute and chro-nic pain from facial skin and oral mucosa: unique neurobiology and challenging treatment[J]. Int J Mol Sci, 2021, 22(11): 5810.
3 Pan XJ, Li ZQ, Zhou Q, et al. Structure of the human voltage-gated sodium channel Nav1.4 in complex with β1[J]. Science, 2018, 362(6412): eaau2486.
4 Noreng S, Li TB, Payandeh J. Structural pharmaco-logy of voltage-gated sodium channels[J]. J Mol Biol, 2021, 433(17): 166967.
5 沈婷, 王冬梅. 钠离子通道NaV1.7与神经病理性疼痛[J]. 中国生物化学与分子生物学报, 2022, 38(6): 725-735.
Shen T, Wang DM. Sodium channel NaV1.7 and neuropathic pain[J]. Chin J Biochem Molecul Biol, 2022, 38(6): 725-735.
6 Nguyen PT, Yarov-Yarovoy V. Towards structure-guided development of pain therapeutics targeting voltage-gated sodium channels[J]. Front Pharmacol, 2022, 13: 842032.
7 Huang JY, Mis MA, Tanaka B, et al. Atypical chan-ges in DRG neuron excitability and complex pain phenotype associated with a Nav1.7 mutation that massively hyperpolarizes activation[J]. Sci Rep, 2018, 8: 1811.
8 Kaluza L, Meents JE, Hampl M, et al. Loss-of-function of Nav1.8/D1639N linked to human pain can be rescued by lidocaine[J]. Pflugers Arch, 2018, 470(12): 1787-1801.
9 Gamal El-Din TM, Lenaeus MJ, Zheng N, et al. Fenestrations control resting-state block of a vol-tage-gated sodium channel[J]. Proc Natl Acad Sci U S A, 2018, 115(51): 13111-13116.
10 Fan XM, Lu YZ, Du GZ, et al. Advances in the understanding of two-pore domain TASK potassium channels and their potential as therapeutic targets[J]. Molecules, 2022, 27(23): 8296.
11 Luo YC, Huang L, Liao P, et al. Contribution of neuronal and glial two-pore-domain potassium channels in health and neurological disorders[J]. Neural Plast, 2021, 2021: 8643129.
12 Pavel MA, Chung HW, Petersen EN, et al. Polymo-dal mechanism for TWIK-related K+ channel inhibition by local anesthetic[J]. Anesth Analg, 2019, 129(4): 973-982.
13 Schmidpeter PAM, Petroff JT 2nd, Khajoueinejad L, et al. Membrane phospholipids control gating of the mechanosensitive potassium leak channel TREK1[J]. Nat Commun, 2023, 14(1): 1077.
14 He JT, Li XY, Zhao X, et al. Hyperpolarization-activated and cyclic nucleotide-gated channel proteins as emerging new targets in neuropathic pain[J]. Rev Neurosci, 2019, 30(6): 639-649.
15 Lee CH, MacKinnon R. Structures of the human HCN1 hyperpolarization-activated channel[J]. Cell, 2017, 168(1/2): 111-120.e11.
16 Putrenko I, Yip R, Schwarz SKW, et al. Cation and voltage dependence of lidocaine inhibition of the hyperpolarization-activated cyclic nucleotide-gated HCN1 channel[J]. Sci Rep, 2017, 7(1): 1281.
17 Dolphin AC, Lee A. Presynaptic calcium channels: specialized control of synaptic neurotransmitter release[J]. Nat Rev Neurosci, 2020, 21(4): 213-229.
18 Cai S, Gomez K, Moutal A, et al. Targeting T-type/CaV3.2 channels for chronic pain[J]. Transl Res, 2021, 234: 20-30.
19 Lee S, Jo S, Talbot S, et al. Novel charged sodium and calcium channel inhibitor active against neurogenic inflammation[J]. Elife, 2019, 8: e48118.
20 Wu KC, Wong KL, Shiao LR, et al. Perturbation of Ca2+ stores and store-operated Ca2+ influx by lidocaine in neuronal N2A and NG108-15 cells[J]. Eur J Pharmacol, 2021, 904: 174115.
21 张俊, 宋必卫. 瞬时受体电位通道在疼痛中作用的研究进展[J]. 中国药理学与毒理学杂志, 2018, 32(8): 644-650.
Zhang J, Song BW. Research progress in role of transient receptor potential channels in pain[J]. Chin J Pharmacol Toxicol, 2018, 32(8): 644-650.
22 Belrose JC, Jackson MF. TRPM2: a candidate therapeutic target for treating neurological diseases[J]. Acta Pharmacol Sin, 2018, 39(5): 722-732.
23 Moran MM. TRP channels as potential drug targets[J]. Annu Rev Pharmacol Toxicol, 2018, 58: 309-330.
24 朱海, 王一, 贺奕博, 等. TRPV1/TRPA1对小鼠子宫内膜异位症炎症及疼痛的作用[J]. 复旦学报(医学版), 2022, 49(6): 934-941.
Zhu H, Wang Y, He YB, et al. TRPV1/TRPA1 correlated with inflammation and pain in mice with endometriosis[J]. Fudan Univ J Med Sci, 2022, 49(6): 934-941.
25 Horishita R, Ogata Y, Fukui R, et al. Local anesthe-tics inhibit transient receptor potential vanilloid subtype 3 channel function in xenopus oocytes[J]. Ane-sth Analg, 2021, 132(6): 1756-1767.
26 Ongun S, Sarkisian A, McKemy DD. Selective cold pain inhibition by targeted block of TRPM8-expressing neurons with quaternary lidocaine derivative QX-314[J]. Commun Biol, 2018, 1: 53.
27 张晓, 曲玉娟, 贾磊, 等. 大鼠脊髓背角TRPV4在背根神经节持续受压致神经病理性疼痛中的作用[J]. 中国康复医学杂志, 2017, 32(2): 156-160.
Zhang X, Qu YJ, Jia L, et al. The role of TRPV4 in spinal cord dorsal horn in the neuropathic pain in chronic compression of right side dorsal root ganglion model of rat[J]. Chin J Rehabilit Med, 2017, 32(2): 156-160.
28 Hansen KB, Wollmuth LP, Bowie D, et al. Structure, function, and pharmacology of glutamate receptor ion channels[J]. Pharmacol Rev, 2021, 73(4): 298-487.
29 Wollmuth LP. Ion permeation in ionotropic glutamate receptors: still dynamic after all these years[J]. Curr Opin Physiol, 2018, 2: 36-41.
30 Kurabe M, Furue H, Kohno T. Intravenous administration of lidocaine directly acts on spinal dorsal horn and produces analgesic effect: an in vivo patch-clamp analysis[J]. Sci Rep, 2016, 6: 26253.
31 Zheng XL, Tai Y, He DW, et al. ETAR and protein kinase A pathway mediate ET-1 sensitization of TRPA1 channel: a molecular mechanism of ET-1-induced mechanical hyperalgesia[J]. Mol Pain, 2019, 15: 1744806919842473.
32 Lindner JS, Rajayer SR, Martiszus BJ, et al. Cinacalcet inhibition of neuronal action potentials preferentially targets the fast inactivated state of voltage-gated sodium channels[J]. Front Physiol, 2022, 13: 1066467.
33 Mattheisen GB, Tsintsadze T, Smith SM. Strong G-protein-mediated inhibition of sodium channels[J]. Cell Rep, 2018, 23(9): 2770-2781.
34 Makdessi MJ, Barr TP, Xue W, et al. Bupivacaine inhibits endothelin-1-evoked increases in intracellular calcium in model sensory neurons[J]. Acta Anaesthesiol Scand, 2015, 59(7): 936-945.
35 Yang X, Wei XC, Mu Y, et al. A review of the mecha-nism of the central analgesic effect of lidocaine[J]. Medicine, 2020, 99(17): e19898.
36 Grage SL, Culetto A, Ulrich AS, et al. Membrane-mediated activity of local anesthetics[J]. Mol Pharmacol, 2021, 100(5): 502-512.
37 Kinoshita M, Chitose T, Matsumori N. Mechanism of local anesthetic-induced disruption of raft-like ordered membrane domains[J]. Biochim Biophys Acta Gen Subj, 2019, 1863(9): 1381-1389.
38 Choi W, Ryu H, Fuwad A, et al. Quantitative analysis of the membrane affinity of local anesthetics using a model cell membrane[J]. Membranes, 2021, 11(8): 579.
39 Cortada E, Serradesanferm R, Brugada R, et al. The voltage-gated sodium channel β2 subunit associates with lipid rafts by S-palmitoylation[J]. J Cell Sci, 2021, 134(6): jcs252189.
40 Bobkov D, Semenova S. Impact of lipid rafts on transient receptor potential channel activities[J]. J Cell Physiol, 2022, 237(4): 2034-2044.
41 程英杰, 高昕, 汪苑苑, 等. 复方甘菊利多卡因对兔口腔溃疡愈合的影响及相关药理机制研究[J]. 口腔医学研究, 2020, 36(11): 1045-1049.
Cheng YJ, Gao X, Wang YY, et al. Efficacy of compound chamomile and lidocaine in the treatment of oral ulcer and associated pharmacological mechanisms[J]. J Oral Sci Res, 2020, 36(11): 1045-1049.
42 Nodai T, Hitomi S, Ono K, et al. Endothelin-1 eli-cits TRP-mediated pain in an acid-induced oral ulcer model[J]. J Dent Res, 2018, 97(8): 901-908.
43 Nolan MW, Long CT, Marcus KL, et al. Nocifensive behaviors in mice with radiation-induced oral mucositis[J]. Radiat Res, 2017, 187(3): 397-403.
44 Miroshnychenko A, Ibrahim S, Azab M, et al. Injec-table and topical local anesthetics for acute dental pain: 2 systematic reviews[J]. J Am Dent Assoc, 2023, 154(1): 53-64.e14.
45 Hossain MZ, Bakri MM, Yahya F, et al. The role of transient receptor potential (TRP) channels in the transduction of dental pain[J]. Int J Mol Sci, 2019, 20(3): 526.
46 Gao X, Meng K. Comparison of articaine, lidocaine and mepivacaine for buccal infiltration after inferior alveolar nerve block in mandibular posterior teeth with irreversible pulpitis[J]. Br Dent J, 2020, 228(8): 605-608.
47 Nagendrababu V, Duncan HF, Whitworth J, et al. Is articaine more effective than lidocaine in patients with irreversible pulpitis? An umbrella review[J]. Int Endod J, 2020, 53(2): 200-213.
48 Rodrigues da Silva GH, Geronimo G, García-López JP, et al. Articaine in functional NLC show improved anesthesia and anti-inflammatory activity in zebrafish[J]. Sci Rep, 2020, 10(1): 19733.
49 Urata K, Shinoda M, Honda K, et al. Involvement of TRPV1 and TRPA1 in incisional intraoral and extraoral pain[J]. J Dent Res, 2015, 94(3): 446-454.
50 Choi GJ, Kang H, Hong ME, et al. Effects of a lidocaine-loaded poloxamer/alginate/CaCl2 mixture on postoperative pain and adhesion in a rat model of incisional pain[J]. Anesth Analg, 2017, 125(1): 320-327.
51 Choi GJ, Ahn EJ, Lee OH, et al. Effects of a BMI1008 mixture on postoperative pain in a rat model of incisional pain[J]. PLoS One, 2021, 16(9): e0257267.
52 Chen S, Xiang J, Ji Y. Efficacy of Articaine vs Lignocaine for infiltration anaesthesia during primary molar extractions[J]. Pak J Med Sci, 2022, 38(4Part-Ⅱ): 1048-1055.
53 Al-Mahalawy H, El-Mahallawy Y, Abdelrahman HH, et al. Articaine versus Lidocaine in only buccal infiltration anesthesia for the extraction of mandibular anterior teeth. A prospective split-mouth randomized-controlled clinical study[J]. BMC Oral Health, 2023, 23(1): 604.
54 Lubecka K, Chęcińska K, Bliźniak F, et al. Intra-articular local anesthetics in temporomandibular disorders: a systematic review and meta-analysis[J]. J Clin Med, 2023, 13(1): 106.
55 Dias FC, Wang ZL, Scapellato G, et al. Silencing of TRPV4-expressing sensory neurons attenuates temporomandibular disorders pain[J]. Mol Pain, 2023, 19: 17448069231185696.
56 Suttle A, Wang P, Dias FC, et al. Sensory neuron-TRPV4 modulates temporomandibular disorder pain via CGRP in mice[J]. J Pain, 2023, 24(5): 782-795.
57 Asan CY, Ağyüz G, Canpolat DG, et al. Chondrotoxic effects of intra-articular injection of local ana-esthetics in the rabbit temporomandibular joint[J]. Int J Oral Maxillofac Surg, 2022, 51(10): 1337-1344.
58 Rana MH, Khan AAG, Khalid I, et al. Therapeutic approach for trigeminal neuralgia: a systematic review[J]. Biomedicines, 2023, 11(10): 2606.
59 Gudin J, Nalamachu S. Utility of lidocaine as a topical analgesic and improvements in patch delivery systems[J]. Postgrad Med, 2020, 132(1): 28-36.
60 Yuan JQ, Fei Y. Lidocaine activates autophagy of astrocytes and ameliorates chronic constriction injury-induced neuropathic pain[J]. J Biochem, 2021, 170(1): 25-31.
61 Zheng Y, Hou XH, Yang SB. Lidocaine potentiates SOCS3 to attenuate inflammation in microglia and suppress neuropathic pain[J]. Cell Mol Neurobiol, 2019, 39(8): 1081-1092.
62 Ślęczkowska M, Misra K, Santoro S, et al. Ion channel genes in painful neuropathies[J]. Biomedicines, 2023, 11(10): 2680.
63 Molins G, Valls-Ontañón A, Hernández-Alfaro F, et al. Additional pre-extubation local anaesthetic application to improve the postoperative course in orthognathic surgery: a randomised controlled trial[J]. Int J Oral Maxillofac Surg, 2023, 52(11): 1173-1178.
64 Lee JT, Sanderson CR, Xuan W, et al. Lidocaine for cancer pain in adults: a systematic review and meta-analysis[J]. J Palliat Med, 2019, 22(3): 326-334.
65 Swarm RA, Paice JA, Anghelescu DL, et al. Adult cancer pain, version 3.2019, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2019, 17(8): 977-1007.
66 Hawley P, Fyles G, Jefferys SG. Subcutaneous lidocaine for cancer-related pain[J]. J Palliat Med, 2020, 23(10): 1357-1364.
67 Hussain N, Brull R, Weber L, et al. The analgesic effectiveness of perioperative lidocaine infusions for acute and chronic persistent postsurgical pain in patients undergoing breast cancer surgery: a systema-tic review and meta-analysis[J]. Br J Anaesth, 2024, 132(3): 575-587.
68 马兆峰, 侯可贵, 李石. 复方甘菊利多卡因凝胶在干槽症治疗中的临床应用[J]. 口腔医学研究, 2023, 39(1): 52-55.
Ma ZF, Hou KG, Li S. Clinical application of compound chamomile lidocaine gel in the treatment of dry socket[J]. J Oral Sci Res, 2023, 39(1): 52-55.
69 黄春水, 董颖韬. 盐酸奥布卡因凝胶对拔牙患儿镇痛作用的评价[J]. 河北医药, 2020, 42(23): 3636-3638.
Huang CS, Dong YT. The analgesic effects of oxybuprocaine hydrochloride gel in children under-going arrachement[J]. Hebei Med J, 2020, 42(23): 3636-3638.
70 Zanon D, Volpato C, Addobbati R, et al. Stability of a novel Lidocaine, adrenaline and tetracaine sterile thermosensitive gel: a ready-to-use formulation[J]. Eur J Pharm Sci, 2019, 136: 104962.
71 Amorim KS, Franz-Montan M, Groppo FC, et al. Palatal needle-free anesthesia for upper molars extraction. A randomized clinical trial[J]. J Cranioma-xillofac Surg, 2020, 48(8): 815-819.
72 Yang YJ, Qiu DH, Liu YJ, et al. Topical anesthetic analgesic therapy using the combination of ropivacaine and dexmedetomidine: hyaluronic acid modified long-acting nanostructured lipid carriers containing a skin penetration enhancer[J]. Drug Des Devel Ther, 2019, 13: 3307-3319.
73 Calixto GMF, Muniz BV, Castro SR, et al. Mucoadhesive, thermoreversible hydrogel, containing tetracaine-loaded nanostructured lipid carriers for topical, intranasal needle-free anesthesia[J]. Pharmaceutics, 2021, 13(11): 1760.
74 Ilfeld BM, Eisenach JC, Gabriel RA. Clinical effectiveness of liposomal bupivacaine administered by infiltration or peripheral nerve block to treat post-operative pain[J]. Anesthesiology, 2021, 134(2): 283-344.
75 Yang H, Kang G, Jang M, et al. Development of lidocaine-loaded dissolving microneedle for rapid and efficient local anesthesia[J]. Pharmaceutics, 2020, 12(11): 1067.
76 Zhu TT, Yu XX, Yi X, et al. Lidocaine-loaded hyalu-ronic acid adhesive microneedle patch for oral mucosal topical anesthesia[J]. Pharmaceutics, 2022, 14(4): 686.
77 Li QP, Yu XQ, Zheng XY, et al. Rapid dissolution microneedle based on polyvinyl alcohol/chitosan for local oral anesthesia[J]. Int J Biol Macromol, 2024, 257: 128629.
78 Lee H, Min HS, Jang M, et al. Lidocaine-loaded dissolving microneedle for safe local anesthesia on oral mucosa for dental procedure[J]. Expert Opin Drug Deliv, 2023, 20(6): 851-861.
79 Daly S, Claydon NCA, Newcombe RG, et al. Randomised controlled trial of a microneedle patch with a topical anaesthetic for relieving the pain of dental injections[J]. J Dent, 2021, 107: 103617.
80 Carugo N, Paglia L, Re D. Pain perception using a computer-controlled anaesthetic delivery system in paediatric dentistry: a review[J]. Eur J Paediatr Dent, 2020, 21(3): 180-182.
81 Ocak H, Akkoyun EF, Çolpak HA, et al. Is the jet injection effective for teeth extraction[J]. J Stomatol Oral Maxillofac Surg, 2020, 121(1): 19-24.
82 Gaudin A, Clouet R, Boëffard C, et al. Comparing intraosseous computerized anaesthesia with inferior alveolar nerve block in the treatment of symptoma-tic irreversible pulpitis: a randomized controlled trial[J]. Int Endod J, 2023, 56(8): 922-931.
83 Figueroa-Fernández NP, Hernández-Miramontes YA, Alonso-Castro ÁJ, et al. A meta-analysis on the efficacy of the ropivacaine infiltration in comparison with other dental anesthetics[J]. Clin Oral Investig, 2021, 25(12): 6779-6790.
84 Chiu CC, Chen JY, Chen YW, et al. Subcutaneous brompheniramine for cutaneous analgesia in rats[J]. Eur J Pharmacol, 2019, 860: 172544.
85 Li CL, Yang R, Sun Y, et al. N58A exerts analgesic effect on trigeminal neuralgia by regulating the MAPK pathway and tetrodotoxin-resistant sodium channel[J]. Toxins, 2021, 13(5): 357.
86 Li SH, Ding M, Wu Y, et al. Histamine sensitization of the voltage-gated sodium channel Nav1.7 contri-butes to histaminergic itch in mice[J]. ACS Chem Neurosci, 2022, 13(5): 700-710.
[1] 谭学莲, 满毅, 黄定明. 牙保存相关上颌窦底提升术的临床应用[J]. 国际口腔医学杂志, 2024, 51(4): 381-391.
[2] 甄亚斐, 彭显, 应斌武, 张平, 周学东, 廖玍. 人工唾液的研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 353-361.
[3] 吴嘉馨,程兴群,吴红崑. 透明质酸在修复龈乳头退缩中的临床应用进展[J]. 国际口腔医学杂志, 2023, 50(3): 347-352.
[4] 陈克难,郭传瑸. 可降解医用镁基金属生物材料的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 322-328.
[5] 刘琳,周婕妤,吴亚菲,赵蕾. 益生菌生态调节在牙周病防治中的应用[J]. 国际口腔医学杂志, 2020, 47(2): 131-137.
[6] 胡竹林,赵诣,李茵. 口腔龈沟液生物标志物的检测分析现状及临床应用前景展望[J]. 国际口腔医学杂志, 2019, 46(3): 308-315.
[7] 丁杰, 宋光泰. 微创技术在儿童龋病治疗中的应用[J]. 国际口腔医学杂志, 2018, 45(4): 473-479.
[8] 佘杨杨, 农晓琳. A型肉毒杆菌毒素在口腔颌面部的临床应用[J]. 国际口腔医学杂志, 2017, 44(6): 707-711.
[9] 吴幸晨 朱亚琴. 自调节根管锉的特性和临床应用评价[J]. 国际口腔医学杂志, 2013, 40(6): 764-768.
[10] 于婷婷 宋光保. T-Scan系统的特点及其临床应用[J]. 国际口腔医学杂志, 2013, 40(1): 113-116.
[11] 边翔1综述李志韧2 杨永进2 沈焕2审校. Bolton 指数指导正畸的临床应用[J]. 国际口腔医学杂志, 2012, 39(5): 646-648.
[12] 陈兵. 太极扣附着体义齿的临床应用[J]. 国际口腔医学杂志, 2010, 37(3): 265-265~267.
[13] 顾敏综述 顾卫平审校. 排龈术的临床应用[J]. 国际口腔医学杂志, 2010, 37(3): 344-344~347.
[14] 程世兵, 谢蟪旭综述 李龙江审校. 肿瘤热化疗临床应用的研究进展[J]. 国际口腔医学杂志, 2010, 37(3): 337-337~340.
[15] 王晓荣, 陈江浩, 牛亦睿. 自攻型微螺钉种植体支抗的临床应用研究[J]. 国际口腔医学杂志, 2009, 36(5): 537-539,543.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!