国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (4): 483-488.doi: 10.7518/gjkq.2024063
• 综述 • 上一篇
Xinyue Chen1(),Xiaoyu Pan2,Yan Yang1,Yuanyuan Jia2,Liang Chen1(
)
摘要:
在计算机算法迅速发展的信息时代,深度学习的应用在各个领域均受到了广泛关注,而卷积神经网络则是深度学习中最为典型的网络结构之一,具有突出的学习能力及适应能力,在图像的识别处理上表现尤为出色。与此同时,在牙体牙髓病学的发展过程中,卷积神经网络的应用也越发常见,例如协助医生进行龋病、根尖周病的分析、诊断、治疗、预后评估等,有利于缓解医疗资源紧缺、推动牙体牙髓病学的发展。本文就卷积神经网络在牙体牙髓病学中的应用进展进行总结,并对其未来发展可能进行初步展望。
中图分类号:
1 | 袁冰清, 张杰, 王岩松. 深度学习[J]. 数字通信世界, 2019, 174(6): 36-37. |
Yuan BQ, Zhang J, Wang YS. Deep learning[J]. Di-git Commun World, 2019, 174(6): 36-37. | |
2 | Maier A, Syben C, Lasser T, et al. A gentle introduction to deep learning in medical image processing[J]. Z Med Phys, 2019, 29(2): 86-101. |
3 | Lahoud P, Diels S, Niclaes L, et al. Development and validation of a novel artificial intelligence dri-ven tool for accurate mandibular canal segmentation on CBCT[J]. J Dent, 2022, 116: 103891. |
4 | Lee JH, Kim DH, Jeong SN, et al. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm[J]. J Periodontal Implant Sci, 2018, 48(2): 114-123. |
5 | Lee KS, Kwak HJ, Oh JM, et al. Automated detection of TMJ osteoarthritis based on artificial intelligence[J]. J Dent Res, 2020, 99(12): 1363-1367. |
6 | 常荍, 王少烽, 左飞飞, 等. 基于深度学习的头颅侧位X线片自动诊断分类研究[J]. 中华口腔医学杂志, 2023, 58(6): 547-553. |
Chang Q, Wang SF, Zuo FF, et al. Automated diagnostic classification with lateral cephalograms based on deep learning network model[J]. Chin J Stomatol, 2023, 58(6): 547-553. | |
7 | Yoo JH, Yeom HG, Shin W, et al. Deep learning based prediction of extraction difficulty for mandibu-lar third molars[J]. Sci Rep, 2021, 11(1): 1954. |
8 | Yamaguchi S, Lee C, Karaer O, et al. Predicting the debonding of CAD/CAM composite resin crowns with AI[J]. J Dent Res, 2019, 98(11): 1234-1238. |
9 | Yu HJ, Cho SR, Kim MJ, et al. Automated skeletal classification with lateral cephalometry based on artificial intelligence[J]. J Dent Res, 2020, 99(3): 249-256. |
10 | Zheng LW, Wang HL, Mei L, et al. Artificial intelligence in digital cariology: a new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks[J]. Ann Transl Med, 2021, 9(9): 763. |
11 | Hu ZY, Cao DT, Hu YN, et al. Diagnosis of in vivo vertical root fracture using deep learning on cone-beam CT images[J]. BMC Oral Health, 2022, 22(1): 382. |
12 | Calazans MAA, Ferreira FABS, Alcoforado MLMG, et al. Automatic classification system for periapical lesions in cone-beam computed tomography[J]. Sensors (Basel), 2022, 22(17): 6481. |
13 | Zhang X, Liang Y, Li W, et al. Development and evaluation of deep learning for screening dental ca-ries from oral photographs[J]. Oral Dis, 2022, 28(1): 173-181. |
14 | Li SH, Liu JL, Zhou ZR, et al. Artificial intelligence for caries and periapical periodontitis detection[J]. J Dent, 2022, 122: 104107. |
15 | Setzer FC, Shi KJ, Zhang ZY, et al. Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images[J]. J Endod, 2020, 46(7): 987-993. |
16 | Orhan K, Bayrakdar IS, Ezhov M, et al. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans[J]. Int Endod J, 2020, 53(5): 680-689. |
17 | Chen H, Zhang KL, Lyu PJ, et al. A deep learning approach to automatic teeth detection and numbe-ring based on object detection in dental periapical films[J]. Sci Rep, 2019, 9(1): 3840. |
18 | Lahoud P, EzEldeen M, Beznik T, et al. Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography[J]. J Endod, 2021, 47(5): 827-835. |
19 | Hsu K, Yuh DY, Lin SC, et al. Improving performance of deep learning models using 3.5D U-Net via majority voting for tooth segmentation on cone beam computed tomography[J]. Sci Rep, 2022, 12(1): 19809. |
20 | Tuzoff DV, Tuzova LN, Bornstein MM, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks[J]. Dentomaxillofac Radiol, 2019, 48(4): 20180051. |
21 | Jang TJ, Kim KC, Cho HC, et al. A fully automated method for 3D individual tooth identification and segmentation in dental CBCT[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(10): 6562-6568. |
22 | Chandrashekar G, AlQarni S, Bumann EE, et al. Collaborative deep learning model for tooth segmentation and identification using panoramic radiographs[J]. Comput Biol Med, 2022, 148: 105829. |
23 | Lee JH, Kim DH, Jeong SN, et al. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm[J]. J Dent, 2018, 77: 106-111. |
24 | Moidu NP, Sharma S, Chawla A, et al. Deep lear-ning for categorization of endodontic lesion based on radiographic periapical index scoring system[J]. Clin Oral Investig, 2022, 26(1): 651-658. |
25 | Lian LY, Zhu TE, Zhu FD, et al. Deep learning for caries detection and classification[J]. Diagnostics(Basel), 2021, 11(9): 1672. |
26 | Park EY, Cho H, Kang S, et al. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning[J]. BMC Oral Health, 2022, 22(1): 573. |
27 | Buyuk C, Arican Alpay B, Er FS. Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep lear-ning methods[J]. Dentomaxillofac Radiol, 2023, 52(3): 20220209. |
28 | Ding BC, Zhang Z, Liang YR, et al. Detection of dental caries in oral photographs taken by mobile phones based on the YOLOv3 algorithm[J]. Ann Transl Med, 2021, 9(21): 1622. |
29 | Lin X, Fu YJ, Ren GQ, et al. Micro-computed tomography-guided artificial intelligence for pulp ca-vity and tooth segmentation on cone-beam computed tomography[J]. J Endod, 2021, 47(12): 1933-1941. |
30 | Duan W, Chen YF, Zhang Q, et al. Refined tooth and pulp segmentation using U-Net in CBCT image[J]. Dentomaxillofac Radiol, 2021, 50(6): 20200251. |
31 | Sherwood AA, Sherwood AI, Setzer FC, et al. A deep learning approach to segment and classify C-shaped canal morphologies in mandibular second molars using cone-beam computed tomography[J]. J Endod, 2021, 47(12): 1907-1916. |
32 | Wang YW, Xia WJ, Yan ZN, et al. Root canal treatment planning by automatic tooth and root canal segmentation in dental CBCT with deep multi-task feature learning[J]. Med Image Anal, 2023, 85: 102750. |
33 | Yang SJ, Lee H, Jang B, et al. Development and va-lidation of a visually explainable deep learning mo-del for classification of C-shaped canals of the mandibular second molars in periapical and panoramic dental radiographs[J]. J Endod, 2022, 48(7): 914-921. |
34 | Hiraiwa T, Ariji Y, Fukuda M, et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on pano-ramic radiography[J]. Dentomaxillofac Radiol, 2019, 48(3): 20180218. |
35 | Zhang CN, Fan LF, Zhang SS, et al. Deep learning based dental implant failure prediction from periapical and panoramic films[J]. Quant Imaging Med Surg, 2023, 13(2): 935-945. |
36 | 庞亮月, 林焕彩. 人工智能在龋病诊疗中的应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(3): 162-166. |
Pang LY, Lin HC. Application of artificial intelligence in the field of dental caries[J]. Chin J Stomatol Res (Electron Ed), 2023, 17(3): 162-166. | |
37 | Campo L, Aliaga IJ, de Paz JF, et al. Retreatment predictions in odontology by means of CBR systems[J]. Comput Intell Neurosci, 2016, 2016: 7485250. |
38 | Herbst CS, Schwendicke F, Krois J, et al. Association between patient-, tooth- and treatment-level factors and root canal treatment failure: a retrospective longitudinal and machine learning study[J]. J Dent, 2022, 117: 103937. |
39 | Qu Y, Lin ZZ, Yang ZJ, et al. Machine learning models for prognosis prediction in endodontic microsurgery[J]. J Dent, 2022, 118: 103947. |
40 | Ngnamsie Njimbouom S, Lee K, Kim JD. MMDCP: multi-modal dental caries prediction for decision support system using deep learning[J]. Int J Environ Res Public Health, 2022, 19(17): 10928. |
41 | 孟凡皓, 田瑜, 乔波, 等. 基于大规模临床数据深度学习的口腔疾病人工智能预防与诊断平台的构建[J]. 精准医学杂志, 2020, 35(6): 497-500. |
Meng FH, Tian Y, Qiao Bo, et al. Construction of a nationwide artificial intelligence prevention and dia-gnosis platform for oral diseases based on deep learning of large-scale clinical data[J]. J Precis Med, 2020, 35(6): 497-500. | |
42 | 王丽, 吴菲, 肖墨, 等. 基于深度学习的龋源性牙髓炎露髓风险预测[J]. 华西口腔医学杂志, 2023, 41(2): 218-224. |
Wang L, Wu F, Xiao M, et al. Prediction of pulp exposure risk of carious pulpitis based on deep lear-ning[J]. West China J Stomatol, 2023, 41(2): 218-224. | |
43 | Ferrer-Sánchez A, Bagan J, Vila-Francés J, et al. Prediction of the risk of cancer and the grade of dysplasia in leukoplakia lesions using deep learning[J]. Oral Oncol, 2022, 132: 105967. |
44 | Zhang XY, Gleber-Netto FO, Wang SD, et al. Deep learning-based pathology image analysis predicts cancer progression risk in patients with oral leukoplakia[J]. Cancer Med, 2023, 12(6): 7508-7518. |
45 | Kwon D, Ahn J, Kim CS, et al. A deep learning model based on concatenation approach to predict the time to extract a mandibular third molar tooth[J]. BMC Oral Health, 2022, 22(1): 571. |
[1] | 刘彤曦,柯星,杨健. 磁共振成像及其在牙体牙髓专业中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 693-698. |
[2] | 张琛,王晶,侯本祥. 住院医师牙体牙髓病学专业规范化临床能力培养的探讨[J]. 国际口腔医学杂志, 2016, 43(3): 260-262. |
|