国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (1): 26-31.doi: 10.7518/gjkq.2018.01.005

• 论著 • 上一篇    下一篇

溶血磷脂酸对牙髓细胞中β-连环蛋白核转位的影响及机制初探

房宏志1, 杨惠2, 邵美瑛3, 胡涛4   

  1. 1.成都市第三人民医院口腔科 成都 610031
    2.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院全科门诊 成都 610041
    3.四川大学华西第四医院口腔科 成都 610041
    4.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院预防科 成都 610041
  • 收稿日期:2017-05-15 修回日期:2017-10-19 出版日期:2018-01-01 发布日期:2018-01-01
  • 通讯作者: 邵美瑛,讲师,博士,Email:shaomeiying2013@163.com
  • 作者简介:房宏志,副主任医师,硕士,Email:1127958575@qq.com
  • 基金资助:

    国家自然科学基金(81400504); 四川省科学技术厅应用基础研究项目(2014JY0073,2013JY0164); 中国博士后科学基金面上项目(2014M562332)

The effects and underlying mechanism of lysophosphatidic acid in β-catenin nuclear translocation of dental pulp cells

Fang Hongzhi1, Yang Hui2, Shao Meiying3, Hu Tao4   

  1. 1. Dept. of Stomatology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    3. Dept. of Stomatology, No. 4 West China Teaching Hospital, Sichuan University, Chengdu 610041, China
    4. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-05-15 Revised:2017-10-19 Online:2018-01-01 Published:2018-01-01
  • Supported by:

    This study was supported by National Natural Science Foundation of China (81400504), Applied Basic Research Project of Sichuan Provincial Science and Technology Department (2014JY0073, 2013JY0164) and China Postdoctoral Science Foundation (2014M562332).

摘要:

目的 采用体外培养的牙髓细胞,探讨溶血磷脂酸(LPA)对牙髓细胞内β-连环蛋白释放、活化及核转位的影响。方法 采用LPA刺激牙髓细胞,Y-27632阻断剂抑制Rho相关蛋白激酶(ROCK),通过免疫荧光和Western blot检测Rho/ROCK信号通路对牙髓细胞β-连环蛋白释放、活化及核转位的影响。结果 LPA刺激牙髓细胞3 h,β-连环蛋白向核膜边缘集聚;刺激6、10 h,见部分牙髓细胞的β-连环蛋白转运至细胞核。用Y-27632预先阻断ROCK后,能够抑制LPA所引起的β-连环蛋白核内转位。Western blot检测结果显示,LPA促进β-连环蛋白表达及活化,Y-27632能够在一定程度上抑制LPA介导的β-连环蛋白的活化水平。结论 LPA能够通过Rho/ROCK通路影响牙髓细胞β-连环蛋白的释放、活化及核转位。

关键词: 牙髓细胞, 溶血磷脂酸, Rho相关蛋白激酶, β-连环蛋白

Abstract:

Objective The aim of our study is to investigate the biological effects of lysophosphatidic acid (LPA) on β-catenin accumulation, activation, and nuclear translocation of cultured human dental pulp cells (DPCs) ex vivo. Methods LPA was used to stimulate dental pulp cells, and Y-27632 was used to inhibit Rho-associated protein kinase (ROCK). Fluorescence microscopy and Western blot were used to detect the effects of Rho/ROCK on β-catenin accumulation, activation, and nuclear transloca- tion. Results β-catenin accumulated around the nuclear membrane after LPA stimulation of DPC for 3 h. When treated for 6 or 10 h with LPA, β-catenin translocated into the nucleus in some dental pulp cells; however, nuclear translocation of β-catenin was abrogated by Y-27632. Results of Western blot showed that LPA promoted β-catenin expression and activation. ROCK inhibition also degraded the level of β-catenin activation. Conclusion LPA regulated β-catenin accumulation, activation, and nuclear translocation via the Rho/ROCK signaling pathway.

Key words: dental pulp cell, lysophosphatidic acid, Rho-associated protein kinase, β-catenin

中图分类号: 

  • R37
[1]Pagès C, Simon MF, Valet P, et al. Lysophosphatidic acid synthesis and release[J]. Prostaglandins Other Lipid Mediat, 2001, 64(1/2/3/4):1-10.
[2]Kranenburg O, Moolenaar WH. Ras-MAP kinase signaling by lysophosphatidic acid and other G pro-tein-coupled receptor agonists[J]. Oncogene, 2001, 20(13):1540-1546.
[3]Gruber R, Kandler B, Jindra C, et al. Dental pulp fibroblasts contain target cells for lysophosphatidic acid[J]. J Dent Res, 2004, 83(6):491-495.
[4]Cheng R, Cheng L, Shao MY, et al. Roles of lyso-phosphatidic acid and the Rho-associated kinase pathway in the migration of dental pulp cells[J]. Exp Cell Res, 2010, 316(6):1019-1027.
[5]Cheng R, Shao MY, Yang H, et al. The effect of lysophosphatidic acid and Rho-associated kinase patterning on adhesion of dental pulp cells[J]. Int Endod J, 2011, 44(1):2-8.
[6]Kim W , Kim M, Jho EH. Wnt/β-catenin signalling: from plasma membrane to nucleus[J]. Biochem J, 2013, 450(1):9-21.
[7]Liu W, Konermann A, Guo T, et al. Canonical Wnt signaling differently modulates osteogenic differen-tiation of mesenchymal stem cells derived from bone marrow and from periodontal ligament under inflam-matory conditions[J]. Biochim Biophys Acta, 2014, 1840(3):1125-1134.
[8]Raggioli A, Junghans D, Rudloff S, et al. Beta-catenin is vital for the integrity of mouse embryonic stem cells[J]. PLoS One, 2014, 9(1):e86691.
[9]Davidson KC, Adams AM, Goodson JM, et al. Wnt/β-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is re-pressed by Oct4[J]. Proc Natl Acad Sci U S A, 2012, 109(12):4485-4490.
[10]Grigoryan T, Wend P, Klaus A, et al. Deciphering the function of canonical Wnt signals in development and disease: conditional loss-and gain-of-function mutations of beta-catenin in mice[J]. Genes Dev, 2008, 22(17):2308-2341.
[11]Kikuchi A, Yamamoto H. Tumor formation due to abnormalities in the beta-catenin-independent path-way of Wnt signaling[J]. Cancer Sci, 2008, 99(2): 202-208.
[12]Ma B, Hottiger MO. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation [J]. Front Immunol, 2016, 7:378.
[13]Anastas JN. Functional crosstalk between Wnt signa-ling and tyrosine kinase signaling in cancer[J]. Semin Oncol, 2015, 42(6):820-831.
[14]Rota LM, Wood TL. Crosstalk of the insulin-like growth factor receptor with the Wnt signaling path-way in breast cancer[J]. Front Endocrinol (Lausanne), 2015, 6:92.
[15]Song L, Li ZY, Liu WP, et al. Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy[J]. Cancer Biol Ther, 2015, 16(1):1-7.
[16]Yang M, Zhong WW, Srivastava N, et al. G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the β- catenin pathway[J]. Proc Natl Acad Sci U S A, 2005, 102(17):6027-6032.
[17]Kim TH, Lee JY, Baek JA, et al. Constitutive stabi-lization of ß-catenin in the dental mesenchyme leads to excessive dentin and cementum formation[J]. Biochem Biophys Res Commun, 2011, 412(4):549- 555.
[18]Yoshioka S, Takahashi Y, Abe M, et al. Activation of the Wnt/β-catenin pathway and tissue inhibitor of metalloprotease 1 during tertiary dentinogenesis[J]. J Biochem, 2013, 153(1):43-50.
[19]Han N, Zheng Y, Li R, et al. β-catenin enhances odontoblastic differentiation of dental pulp cells through activation of Runx2[J]. PLoS One, 2014, 9 (2):e88890.
[20]Huang H, He X. Wnt/β-catenin signaling: new (and old) players and new insights[J]. Curr Opin Cell Biol, 2008, 20(2):119-125.
[21]白戈, 唐珂, 景乃禾. Wnt与其他信号通路在胚胎发育中的crosstalk[J]. 生命的化学, 2002, 22(4):304- 308. Bai G, Tang K, Jing NH. The crosstalk between Wnt and other signal pathway during the embryo develop-ment[J]. Chemistry Life, 2002, 22(4):304-308.
[22]Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way[J]. Dev Biol, 2004, 265(1):23-32.
[23]Yin J, Yu FS. Rho kinases regulate corneal epithelial wound healing[J]. Am J Physiol Cell Physiol, 2008, 295(2):378-387.
[24]Wu X, Tu X, Joeng KS, et al. Rac1 activation con-trols nuclear localization of beta-catenin during canonical Wnt signaling[J]. Cell, 2008, 133(2):340- 353.
[25]Gay I, Schwartz Z, Sylvia VL, et al. Lysophospholipid regulates release and activation of latent TGF-beta1 from chondrocyte extracellular matrix[J]. Biochim Biophys Acta, 2004, 1684(1/2/3):18-28.
[1] 陈燕活, 安少锋, 高燕. 硅酸钙类盖髓剂生物学性能的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 459-464.
[2] 李蕾, 乔祥晨 崔彩云, 郭维华, 田卫东, . 光引发聚合改性明胶用于牙组织工程的可能性初探[J]. 国际口腔医学杂志, 2015, 42(3): 265-268.
[3] 庞骁霄,李承浩,石冰. β-连环蛋白及其在腭发生中的作用[J]. 国际口腔医学杂志, 2015, 42(2): 243-247.
[4] 郑桂婷 徐燕. WNT/β-连环蛋白信号转导通路在牙周组织再生中的作用[J]. 国际口腔医学杂志, 2013, 40(6): 773-777.
[5] 龚启梅综述 凌均棨审校. 基因芯片技术在牙髓生物学研究中的应用进展[J]. 国际口腔医学杂志, 2012, 39(5): 608-611.
[6] 杨惠综述 胡涛审校. 牙髓细胞迁移的研究进展[J]. 国际口腔医学杂志, 2009, 36(3): 294-296.
[7] 孙海,谭红,叶玲. 体外培养牙髓细胞分化相关标记物的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): -.
[8] 朱玉婷, 杨惠综述 胡涛审校. 牙髓程序性细胞死亡的研究进展[J]. 国际口腔医学杂志, 2008, 35(2): 147-150.
[9] 张帼,黄翠. 牙体粘接树脂的生物相容性及其影响因素[J]. 国际口腔医学杂志, 2005, 32(02): 157-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .