国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (1): 26-31.doi: 10.7518/gjkq.2018.01.005
房宏志1, 杨惠2, 邵美瑛3, 胡涛4
Fang Hongzhi1, Yang Hui2, Shao Meiying3, Hu Tao4
摘要:
目的 采用体外培养的牙髓细胞,探讨溶血磷脂酸(LPA)对牙髓细胞内β-连环蛋白释放、活化及核转位的影响。方法 采用LPA刺激牙髓细胞,Y-27632阻断剂抑制Rho相关蛋白激酶(ROCK),通过免疫荧光和Western blot检测Rho/ROCK信号通路对牙髓细胞β-连环蛋白释放、活化及核转位的影响。结果 LPA刺激牙髓细胞3 h,β-连环蛋白向核膜边缘集聚;刺激6、10 h,见部分牙髓细胞的β-连环蛋白转运至细胞核。用Y-27632预先阻断ROCK后,能够抑制LPA所引起的β-连环蛋白核内转位。Western blot检测结果显示,LPA促进β-连环蛋白表达及活化,Y-27632能够在一定程度上抑制LPA介导的β-连环蛋白的活化水平。结论 LPA能够通过Rho/ROCK通路影响牙髓细胞β-连环蛋白的释放、活化及核转位。
中图分类号:
[1]Pagès C, Simon MF, Valet P, et al. Lysophosphatidic acid synthesis and release[J]. Prostaglandins Other Lipid Mediat, 2001, 64(1/2/3/4):1-10. [2]Kranenburg O, Moolenaar WH. Ras-MAP kinase signaling by lysophosphatidic acid and other G pro-tein-coupled receptor agonists[J]. Oncogene, 2001, 20(13):1540-1546. [3]Gruber R, Kandler B, Jindra C, et al. Dental pulp fibroblasts contain target cells for lysophosphatidic acid[J]. J Dent Res, 2004, 83(6):491-495. [4]Cheng R, Cheng L, Shao MY, et al. Roles of lyso-phosphatidic acid and the Rho-associated kinase pathway in the migration of dental pulp cells[J]. Exp Cell Res, 2010, 316(6):1019-1027. [5]Cheng R, Shao MY, Yang H, et al. The effect of lysophosphatidic acid and Rho-associated kinase patterning on adhesion of dental pulp cells[J]. Int Endod J, 2011, 44(1):2-8. [6]Kim W , Kim M, Jho EH. Wnt/β-catenin signalling: from plasma membrane to nucleus[J]. Biochem J, 2013, 450(1):9-21. [7]Liu W, Konermann A, Guo T, et al. Canonical Wnt signaling differently modulates osteogenic differen-tiation of mesenchymal stem cells derived from bone marrow and from periodontal ligament under inflam-matory conditions[J]. Biochim Biophys Acta, 2014, 1840(3):1125-1134. [8]Raggioli A, Junghans D, Rudloff S, et al. Beta-catenin is vital for the integrity of mouse embryonic stem cells[J]. PLoS One, 2014, 9(1):e86691. [9]Davidson KC, Adams AM, Goodson JM, et al. Wnt/β-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is re-pressed by Oct4[J]. Proc Natl Acad Sci U S A, 2012, 109(12):4485-4490. [10]Grigoryan T, Wend P, Klaus A, et al. Deciphering the function of canonical Wnt signals in development and disease: conditional loss-and gain-of-function mutations of beta-catenin in mice[J]. Genes Dev, 2008, 22(17):2308-2341. [11]Kikuchi A, Yamamoto H. Tumor formation due to abnormalities in the beta-catenin-independent path-way of Wnt signaling[J]. Cancer Sci, 2008, 99(2): 202-208. [12]Ma B, Hottiger MO. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation [J]. Front Immunol, 2016, 7:378. [13]Anastas JN. Functional crosstalk between Wnt signa-ling and tyrosine kinase signaling in cancer[J]. Semin Oncol, 2015, 42(6):820-831. [14]Rota LM, Wood TL. Crosstalk of the insulin-like growth factor receptor with the Wnt signaling path-way in breast cancer[J]. Front Endocrinol (Lausanne), 2015, 6:92. [15]Song L, Li ZY, Liu WP, et al. Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy[J]. Cancer Biol Ther, 2015, 16(1):1-7. [16]Yang M, Zhong WW, Srivastava N, et al. G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the β- catenin pathway[J]. Proc Natl Acad Sci U S A, 2005, 102(17):6027-6032. [17]Kim TH, Lee JY, Baek JA, et al. Constitutive stabi-lization of ß-catenin in the dental mesenchyme leads to excessive dentin and cementum formation[J]. Biochem Biophys Res Commun, 2011, 412(4):549- 555. [18]Yoshioka S, Takahashi Y, Abe M, et al. Activation of the Wnt/β-catenin pathway and tissue inhibitor of metalloprotease 1 during tertiary dentinogenesis[J]. J Biochem, 2013, 153(1):43-50. [19]Han N, Zheng Y, Li R, et al. β-catenin enhances odontoblastic differentiation of dental pulp cells through activation of Runx2[J]. PLoS One, 2014, 9 (2):e88890. [20]Huang H, He X. Wnt/β-catenin signaling: new (and old) players and new insights[J]. Curr Opin Cell Biol, 2008, 20(2):119-125. [21]白戈, 唐珂, 景乃禾. Wnt与其他信号通路在胚胎发育中的crosstalk[J]. 生命的化学, 2002, 22(4):304- 308. Bai G, Tang K, Jing NH. The crosstalk between Wnt and other signal pathway during the embryo develop-ment[J]. Chemistry Life, 2002, 22(4):304-308. [22]Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way[J]. Dev Biol, 2004, 265(1):23-32. [23]Yin J, Yu FS. Rho kinases regulate corneal epithelial wound healing[J]. Am J Physiol Cell Physiol, 2008, 295(2):378-387. [24]Wu X, Tu X, Joeng KS, et al. Rac1 activation con-trols nuclear localization of beta-catenin during canonical Wnt signaling[J]. Cell, 2008, 133(2):340- 353. [25]Gay I, Schwartz Z, Sylvia VL, et al. Lysophospholipid regulates release and activation of latent TGF-beta1 from chondrocyte extracellular matrix[J]. Biochim Biophys Acta, 2004, 1684(1/2/3):18-28. |
[1] | 陈燕活, 安少锋, 高燕. 硅酸钙类盖髓剂生物学性能的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 459-464. |
[2] | 李蕾, 乔祥晨 崔彩云, 郭维华, 田卫东, . 光引发聚合改性明胶用于牙组织工程的可能性初探[J]. 国际口腔医学杂志, 2015, 42(3): 265-268. |
[3] | 庞骁霄,李承浩,石冰. β-连环蛋白及其在腭发生中的作用[J]. 国际口腔医学杂志, 2015, 42(2): 243-247. |
[4] | 郑桂婷 徐燕. WNT/β-连环蛋白信号转导通路在牙周组织再生中的作用[J]. 国际口腔医学杂志, 2013, 40(6): 773-777. |
[5] | 龚启梅综述 凌均棨审校. 基因芯片技术在牙髓生物学研究中的应用进展[J]. 国际口腔医学杂志, 2012, 39(5): 608-611. |
[6] | 杨惠综述 胡涛审校. 牙髓细胞迁移的研究进展[J]. 国际口腔医学杂志, 2009, 36(3): 294-296. |
[7] | 孙海,谭红,叶玲. 体外培养牙髓细胞分化相关标记物的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): -. |
[8] | 朱玉婷, 杨惠综述 胡涛审校. 牙髓程序性细胞死亡的研究进展[J]. 国际口腔医学杂志, 2008, 35(2): 147-150. |
[9] | 张帼,黄翠. 牙体粘接树脂的生物相容性及其影响因素[J]. 国际口腔医学杂志, 2005, 32(02): 157-158. |
|