国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (3): 249-256.doi: 10.7518/gjkq.2020055

• 专家笔谈 •    下一篇

骨骼发育中骨骼干细胞的鉴定

石玉()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医学院 成都 610041
  • 收稿日期:2020-02-06 修回日期:2020-02-19 出版日期:2020-05-01 发布日期:2020-05-08
  • 通讯作者: 石玉 E-mail:intobiooo@163.com
  • 作者简介:石玉,研究员,博士,Email:intobiooo@163.com
  • 基金资助:
    中央高校基本科研业务费专项资金(20822041D4014);四川大学华西口腔医院引进人才科研启动经费(QDJF2019-2)

The definition of skeletal stem cell in bone development

Shi Yu()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-02-06 Revised:2020-02-19 Online:2020-05-01 Published:2020-05-08
  • Contact: Yu Shi E-mail:intobiooo@163.com
  • Supported by:
    The Fundamental Research Funds for the Central Universities(20822041D4014);Scientific Research Foundation for Recruited Talents, West China Hospital of Stomatology, Sichuan University(QDJF2019-2)

摘要:

越来越多的研究证明骨形成源于骨骼干细胞的成骨向分化。在过去10年,骨骼干细胞的界定方法已从简单的体外分化实验转变为多次移植以及谱系追踪等体内实验。复杂的复合式研究方法为鉴定婴儿期软骨膜干细胞、新生儿期生长板静止区干细胞以及成体期骨髓间充质干细胞提供了更直观和更准确的实验结果。多种不同来源的骨骼干细胞紧密地相互合作,为骨骼发育、稳态维持以及硬组织再生提供了重要的基础。尽管受到学术界越来越多的关注,但对骨骼干细胞的探讨与研究还处在起步阶段,尚需要更深入、更系统的科学数据来完善对骨骼干细胞的认识。

关键词: 骨骼干细胞, 鉴定, 骨骼发育

Abstract:

Growing evidence supports the idea that skeletal stem cells play important roles in bone development. Over the recent years, the identification of skeletal stem cells has evolved from cells simply defined by in vitro behaviors to cells identified by a combination of ex vivo serial transplantation assays and in vitro lineage-tracing experiments. These approaches have shown better identification of the characteristics of skeletal stem cells residing in multiple tissues, including the perichondrium of the fetal bone, the resting zone of the postnatal growth plate and the adult bone marrow space. Multiple groups of skeletal stem cells seem to collaborate tightly and achieve critical biological functions of mineralized tissue, including not only bone development and growth, but also maintenance and repair. Although recently more studies have been focusing on this topic and collecting numbers of important findings, we are still beginning to understand the diversity and the nature of skeletal stem cells, and how they actually behave in vivo. Accumulating works need to be done to investigate the feature and systemic regulation of skeletal stem cells.

Key words: skeletal stem cell, identification, bone development

中图分类号: 

  • Q254
[1] Long FX . Building strong bones: molecular regula-tion of the osteoblast lineage[J]. Nat Rev Mol Cell Biol, 2011,13(1):27-38.
doi: 10.1038/nrm3254 pmid: 22189423
[2] Olsen BR, Reginato AM, Wang W . Bone develop-ment[J]. Annu Rev Cell Dev Biol, 2000,16:191-220.
doi: 10.1146/annurev.cellbio.16.1.191 pmid: 11031235
[3] Bianco P . “Mesenchymal” stem cells[J]. Annu Rev Cell Dev Biol, 2014,30:677-704.
doi: 10.1146/annurev-cellbio-100913-013132 pmid: 25150008
[4] Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV . Osteogenesis in transplants of bone marrow cells[J]. J Embryol Exp Morphol, 1966,16(3):381-390.
pmid: 5336210
[5] Castro-Malaspina H, Gay RE, Resnick G , et al. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny[J]. Blood, 1980,56(2):289-301.
pmid: 6994839
[6] Sacchetti B, Funari A, Michienzi S , et al. Self-renewing osteoprogenitors in bone marrow sinusoids can or-ganize a hematopoietic microenvironment[J]. Cell, 2007,131(2):324-336.
doi: 10.1016/j.cell.2007.08.025 pmid: 17956733
[7] Bianco P, Cao X, Frenette PS , et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine[J]. Nat Med, 2013,19(1):35-42.
doi: 10.1038/nm.3028 pmid: 23296015
[8] Thomson TM, Rettig WJ, Chesa PG , et al. Expression of human nerve growth factor receptor on cells de-rived from all three germ layers[J]. Exp Cell Res, 1988,174(2):533-539.
doi: 10.1016/0014-4827(88)90323-0 pmid: 2828087
[9] Cattoretti G, Schiró R, Orazi A , et al. Bone marrow stroma in humans: anti-nerve growth factor receptor antibodies selectively stain reticular cells in vivo and in vitro[J]. Blood, 1993,81(7):1726-1738.
pmid: 7681701
[10] Jones EA, English A, Kinsey SE , et al. Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesen-chymal stromal cells from human bone marrow[J]. Cytometry B Clin Cytom, 2006,70(6):391-399.
doi: 10.1002/cyto.b.20118 pmid: 16977637
[11] Jones E, English A, Churchman SM , et al. Large-scale extraction and characterization of CD271+ multipotential stromal cells from trabecular bone in health and osteoarthritis: implications for bone re-generation strategies based on uncultured or mini-mally cultured multipotential stromal cells[J]. Ar-thritis Rheum, 2010,62(7):1944-1954.
[12] Quirici N, Soligo D, Bossolasco P , et al. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies[J]. Exp Hematol, 2002,30(7):783-791.
doi: 10.1016/s0301-472x(02)00812-3 pmid: 12135677
[13] Shi ST, Gronthos S . Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp[J]. J Bone Miner Res, 2003,18(4):696-704.
doi: 10.1359/jbmr.2003.18.4.696 pmid: 12674330
[14] Kunisaki Y, Bruns I, Scheiermann C , et al. Arteriolar niches maintain haematopoietic stem cell quiescence[J]. Nature, 2013,502(7473):637-643.
doi: 10.1038/nature12612 pmid: 24107994
[15] Morikawa S, Mabuchi Y, Kubota Y , et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow[J]. J Exp Med, 2009,206(11):2483-2496.
doi: 10.1084/jem.20091046 pmid: 19841085
[16] Tormin A, Li O, Brune JC , et al. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization[J]. Blood, 2011,117(19):5067-5077.
doi: 10.1182/blood-2010-08-304287 pmid: 21415267
[17] Mabuchi Y, Morikawa S, Harada S , et al. LNGFR+- THY-1+VCAM-1hi+ cells reveal functionally distinct subpopulations in mesenchymal stem cells[J]. Stem Cell Reports, 2013,1(2):152-165.
doi: 10.1016/j.stemcr.2013.06.001 pmid: 24052950
[18] Wang Y, Chen XD, Cao W , et al. Plasticity of mesen-chymal stem cells in immunomodulation: patholo-gical and therapeutic implications[J]. Nat Immunol, 2014,15(11):1009-1016.
doi: 10.1038/ni.3002 pmid: 25329189
[19] Chan CK, Seo EY, Chen JY , et al. Identification and specification of the mouse skeletal stem cell[J]. Cell, 2015,160(1/2):285-298.
[20] Chan CKF, Gulati GS, Sinha R , et al. Identification of the human skeletal stem cell[J]. Cell, 2018, 175 (1): 43-56.e21.
doi: 10.1016/j.cell.2018.07.029 pmid: 30241615
[21] Mignone JL, Kukekov V, Chiang AS , et al. Neural stem and progenitor cells in nestin-GFP transgenic mice[J]. J Comp Neurol, 2004,469(3):311-324.
doi: 10.1002/cne.10964 pmid: 14730584
[22] Méndez-Ferrer S, Michurina TV, Ferraro F , et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche[J]. Nature, 2010,466(7308):829-834.
doi: 10.1038/nature09262 pmid: 20703299
[23] Pinho S, Lacombe J, Hanoun M , et al. PDGFRα and CD51 mark human nestin+ sphere-forming mesen-chymal stem cells capable of hematopoietic progenitor cell expansion[J]. J Exp Med, 2013,210(7):1351-1367.
doi: 10.1084/jem.20122252 pmid: 23776077
[24] Nagasawa T, Hirota S, Tachibana K , et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1[J]. Nature, 1996,382(6592):635-638.
doi: 10.1038/382635a0 pmid: 8757135
[25] Sugiyama T, Kohara H, Noda M , et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches[J]. Immunity, 2006,25(6):977-988.
doi: 10.1016/j.immuni.2006.10.016 pmid: 17174120
[26] Zou YR, Kottmann AH, Kuroda M , et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development[J]. Nature, 1998,393(6685):595-599.
doi: 10.1038/31269 pmid: 9634238
[27] Omatsu Y, Sugiyama T, Kohara H , et al. The essential functions of adipo-osteogenic progenitors as the he-matopoietic stem and progenitor cell niche[J]. Im-munity, 2010,33(3):387-399.
[28] Logan M, Martin JF, Nagy A , et al. Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer[J]. Genesis, 2002,33(2):77-80.
doi: 10.1002/gene.10092 pmid: 12112875
[29] Akiyama H, Kim JE, Nakashima K , et al. Osteo-chondroprogenitor cells are derived from Sox9 ex-pressing precursors[J]. Proc Natl Acad Sci U S A, 2005,102(41):14665-14670.
doi: 10.1073/pnas.0504750102 pmid: 16203988
[30] Shi Y, He GX, Lee WC , et al. Gli1 identifies osteo-genic progenitors for bone formation and fracture repair[J]. Nat Commun, 2017,8(1):2043.
doi: 10.1038/s41467-017-02171-2 pmid: 29230039
[31] Isern J, García-García A, Martín AM , et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche func-tion[J]. eLife, 2014,3:e03696.
doi: 10.7554/eLife.03696 pmid: 25255216
[32] Mizoguchi T, Pinho S, Ahmed J , et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development[J]. Dev Cell, 2014,29(3):340-349.
doi: 10.1016/j.devcel.2014.03.013 pmid: 24823377
[33] Hsu DR, Economides AN, Wang X , et al. The Xeno-pus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities[J]. Mol Cell, 1998,1(5):673-683.
doi: 10.1016/s1097-2765(00)80067-2 pmid: 9660951
[34] Worthley DL, Churchill M, Compton JT , et al. Gre-mlin 1 identifies a skeletal stem cell with bone, carti-lage, and reticular stromal potential[J]. Cell, 2015,160(1/2):269-284.
doi: 10.1016/j.cell.2014.11.042 pmid: 25594183
[35] Ono N, Ono W, Nagasawa T , et al. A subset of chon-drogenic cells provides early mesenchymal pro-genitors in growing bones[J]. Nat Cell Biol, 2014,16(12):1157-1167.
doi: 10.1038/ncb3067 pmid: 25419849
[36] Zhou BO, Yue R, Murphy MM , et al. Leptin-re-ceptor-expressing mesenchymal stromal cells re-present the main source of bone formed by adult bone marrow[J]. Cell Stem Cell, 2014,15(2):154-168.
doi: 10.1016/j.stem.2014.06.008 pmid: 24953181
[37] Park D, Spencer JA, Koh BI , et al. Endogenous bone marrow MSCs are dynamic, fate-restricted par-ticipants in bone maintenance and regeneration[J]. Cell Stem Cell, 2012,10(3):259-272.
doi: 10.1016/j.stem.2012.02.003 pmid: 22385654
[38] Duchamp de Lageneste O, Julien A, Abou-Khalil R , et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by perio-stin[J]. Nat Commun, 2018,9(1):773.
doi: 10.1038/s41467-018-03124-z pmid: 29472541
[39] Matthews BG, Grcevic D, Wang LP , et al. Analysis of αSMA-labeled progenitor cell commitment identi-fies notch signaling as an important pathway in fra-cture healing[J]. J Bone Miner Res, 2014,29(5):1283-1294.
doi: 10.1002/jbmr.2140 pmid: 24190076
[40] Wilk K, Yeh SA, Mortensen LJ , et al. Postnatal calvarial skeletal stem cells expressing PRX1 reside exclusively in the calvarial sutures and are required for bone regeneration[J]. Stem Cell Reports, 2017,8(4):933-946.
doi: 10.1016/j.stemcr.2017.03.002 pmid: 28366454
[41] Zhao H, Feng JF, Ho TV , et al. The suture provides a niche for mesenchymal stem cells of craniofacial bones[J]. Nat Cell Biol, 2015,17(4):386-396.
doi: 10.1038/ncb3139 pmid: 25799059
[42] Debnath S, Yallowitz AR, McCormick J , et al. Dis-covery of a periosteal stem cell mediating intramem-branous bone formation[J]. Nature, 2018,562(7725):133-139.
doi: 10.1038/s41586-018-0554-8 pmid: 30250253
[43] Abad V, Meyers JL, Weise M , et al. The role of the resting zone in growth plate chondrogenesis[J]. Endocrinology, 2002,143(5):1851-1857.
doi: 10.1210/endo.143.5.8776 pmid: 11956168
[44] Mizuhashi K, Ono W, Matsushita Y , et al. Resting zone of the growth plate houses a unique class of skeletal stem cells[J]. Nature, 2018,563(7730):254-258.
doi: 10.1038/s41586-018-0662-5 pmid: 30401834
[1] 谭丹1 朱丽丽1 曾昕1 陈谦明1 王智2. 肿瘤微环境中间质细胞的组织学鉴别[J]. 国际口腔医学杂志, 2013, 40(3): 368-370.
[2] 谢蟪旭, 王萍综述 刘敏川审校. 多位点序列分型法在感染性疾病中的应用[J]. 国际口腔医学杂志, 2009, 36(5): 557-560.
[3] 胡晓燕,李颂,梅陵宣,. 变形链球菌分子生物学鉴定技术新进展[J]. 国际口腔医学杂志, 2006, 33(05): 346-348.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 张婷,莫安春. 暂时冠桥修复材料的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[9] 孙兰英1 王其宝1 包崇云2 葛文章1 杜毅1. 碱性磷酸酶mRNA 在体内组织工程骨中的表达[J]. 国际口腔医学杂志, 2011, 38(4): 388 -391 .
[10] 赵勇. 拔牙后阶梯状根形种植体即刻植入的手术过程及6年统计结果[J]. 国际口腔医学杂志, 2002, 29(05): .