国际口腔医学杂志 ›› 2016, Vol. 43 ›› Issue (2): 181-186.doi: 10.7518/gjkq.2016.02.015

• 综述 • 上一篇    下一篇

嗜酸性粒细胞增生性淋巴肉芽肿的免疫研究进展

陈青立,Srijana Dwa,Karmesh Bajracharya,龚忠诚   

  1. 新疆医科大学第一附属医院颌面肿瘤外科 乌鲁木齐 830054
  • 收稿日期:2015-09-15 修回日期:2015-12-08 出版日期:2016-03-01 发布日期:2016-03-01
  • 通讯作者: 龚忠诚,副教授,博士,Email:gump0904@aliyun.com
  • 作者简介:陈青立,硕士,Email:qingli-chen@hotmail.com

Research progress on the immunity of eosinophilic hyperplastic lymphogranuloma

Chen Qingli, Srijana Dwa, Karmesh Bajracharya, Gong Zhongcheng   

  1. Dept. of Maxillofacial Tumor Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China)
  • Received:2015-09-15 Revised:2015-12-08 Online:2016-03-01 Published:2016-03-01

摘要: 嗜酸性粒细胞增生性淋巴肉芽肿也称木村病(KD),伴有嗜酸性粒细胞和血清免疫球蛋白(Ig)E升高。低亲和力IgE受体表达于B细胞、T细胞、嗜酸性粒细胞表面,调节各种免疫应答。在KD初发和复发患者中,IgG4均增高,被看作非主要致病性抗体。滤泡树突细胞分泌的趋化因子、黏附分子和营养因子可调控B细胞免疫应答并作用于局部微环境。嗜酸性粒细胞分泌的嗜酸性粒细胞阳离子蛋白在KD发病过程中起着重要的作用。肥大细胞可促进嗜酸性粒细胞的浸润并诱导B细胞合成IgE。KD患者血清补体C5a高反应性可以调节补体活化后介导的细胞免疫应答。白细胞介素(IL)-4可诱导IgE合成,IL-5、粒细胞-巨噬细胞集落刺激因子和IL-3可促使嗜酸性粒细胞局灶浸润。嗜酸性粒细胞趋化因子与调节正常T细胞表达和分泌因子一起参与嗜酸性粒细胞在炎症处的聚集。Th细胞又分为Th1和Th2细胞,Th1细胞参与细胞免疫反应,Th2细胞参与体液免疫及变态反应性免疫反应。嗜酸性粒细胞增多及IgE升高,可能系Th2细胞在KD发病机制中起着重要的作用。

关键词: 嗜酸性粒细胞增生性淋巴肉芽肿, 木村病, 免疫紊乱, 嗜酸性粒细胞增生性淋巴肉芽肿, 木村病, 免疫紊乱

Abstract: Eosinophilic hyperplastic lymphogranuloma, is also known as Kimura’s disease(KD), causes elevated eosinophils and serum IgE. The low-affinity IgE receptor is expressed on the surface of B and T cells, as well as eosinophils, and regulates various immune responses. Increased IgG4 is deemed a benign antibody without pathogenicity in primary and recurrent KD. Provision of chemokines, adhesion molecules, and trophic factors induce follicular dendritic cells to participate in the shaping of B cell responses and molding of the local microenvironment. Eosinophil cationic protein from eosinophils is an important agent in KD mechanism. The hyper-responsiveness of C5a in KD plasma may be important in regulating cellular response after complementary activation. Interleukin(IL)-4 induces IgE synthesis. IL-5, granulocyte macrophage colony-stimulating factor, and IL-3 lead to focal eosinophil infiltration. Eotaxin and regulated upon activation normal T cell expressed and secreted factor would also help to boost eosinophils concentration in inflammation. T helper(Th) cells are subdivided into the Th1 and Th2 subsets. Th1 cells are primarily involved in cellmediated immune responses, whereas Th2 cells fulfill an important role in humoral and allergic immune responses. Lifted eosinophils and serum IgE may be caused by Th2 polarization in the KD mechanism.

Key words: eosinophilic hyperplastic lymphogranuloma, Kimura’s disease, immunologic derangement, eosinophilic hyperplastic lymphogranuloma, Kimura’s disease, immunologic derangement

中图分类号: 

  • Q 256
[1] 程茂杰, 常建民. 木村病[J]. 中华皮肤科杂志, 2010, 43(3):218-220.
Cheng MJ, Chang JM. Kimura’s disease[J]. Chin J Dermatol, 2010, 43(3):218-220.
[2] 杨珂, 谷京城. 木村病的临床研究进展[J]. 辽宁医学院学报, 2012, 33(2):179-181.
Yang K, Gu JC. Progress of clinical research on Kimura’s disease[J]. J Liaoning Med Univ, 2012, 33(2):179-181.
[3] Meningaud JP, Pitak-Arnnop P, Fouret P, et al. Kimura’s disease of the parotid region: report of 2 cases and review of the literature[J]. J Oral Maxillofac Surg, 2007, 65(1):134-140.
[4] Beccastrini E, Emmi G, Chiodi M, et al. Kimura’s disease: case report of an Italian young male and response to oral cyclosporine A in an 8 years followup[J]. Clin Rheumatol, 2013, 32(Suppl 1):S55-S57.
[5] Tseng CF, Lin HC, Huang SC, et al. Kimura’s disease presenting as bilateral parotid masses[J]. Eur Arch Otorhinolaryngol, 2005, 262(1):8-10.
[6] 何志秀. 头颈及颌面部嗜酸性淋巴肉芽肿54例临床病理分析[J]. 华西口腔医学杂志, 1990, 8(2):120-122.
He ZX. He ad and ne ck and maxi l lof a c i a l eosinophilic lymphoid granuloma of 54 cases of clinical pathology analysis[J]. West China J Stomatol, 1990, 8(2):120-122.
[7] 窦训武, 朱雪明, 尹德佩 等. 儿童腮腺区嗜酸性粒细胞增多性淋巴肉芽肿3例[J]. 华西口腔医学杂志, 2010, 28(6):675-677.
Dou XW, Zhu XM, Yin DP, et al. Three cases of eosinophilichyperplastic lymphogranuloma in childreny’s parotid area[J]. West China J Stomatol, 2010, 28(6):675-677.
[8] Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils[J]. J Allergy Clin Immunol, 2010, 125(Suppl 2):S73-S80.
[9] Blink SE, Fu YX. IgE regulates T helper cell differentiation through Fc gamma RⅢ mediated dendritic cell cytokine modulation[J]. Cell Immunol, 2010, 264(1):54-60.
[10] Gustavsson S, Wernersson S, Heyman B. Restoration of the antibody response to IgE/antigen complexes in CD23-deficient mice by CD23+ spleen or bone marrow cells[J]. J Immunol, 2000, 164(8):3990-3995.
[11] Sukumar S, Conrad DH, Szakal AK, et al. Differential T cell-mediated regulation of CD23 (Fc epsilonRⅡ) in B cells and follicular dendritic cells [J]. J Immunol, 2006, 176(8):4811-4817.
[12] Akatsuka N, Ohta N, Fukase S, et al. In situ expression of CD23 in lymph nodes of patients with Kimura’s disease[J]. Auris Nasus Larynx, 2011, 38(3):362-366.
[13] Aalberse RC, Stapel SO, Schuurman J, et al. Immunoglobulin G4: an odd antibody[J]. Clin Exp Allergy, 2009, 39(4):469-477.
[14] McKelvie PA, Lyons B, Barnett G, et al. Kimura’s disease in two Caucasians, one with multiple recurrences associated with prominent IgG4 production[J]. Pathology, 2012, 44(3):275-278.
[15] Aguzzi A, Kranich J, Krautler NJ. Follicular dendritic cells: origin, phenotype, and function in health and disease[J]. Trends Immunol, 2014, 35(3):105-113.
[16] Maeda K, Matsuda M, Imai Y. Follicular dendritic cells: structure as related to function[J]. Curr Top Microbiol Immunol, 1995, 201:119-139.
[17] Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors [J]. Annu Rev Immunol, 2005, 23:275-306.
[18] Facchetti F, Vermi W, Mason D, et al. The plasmacytoid monocyte/interferon producing cells[J]. Virchows Arch, 2003, 443(6):703-717.
[19] Dargent JL, Vannuffel P, Saint-Remy JM, et al. Plasmacytoid dendritic cells in Kimura disease[J]. Am J Dermatopathol, 2009, 31(8):854-856.
[20] Venge P, Dahl R, Fredens K, et al. Epithelial injury by human eosinophils[J]. Am Rev Respir Dis, 1988, 138(6 Pt 2):S54-S57.
[21] Zheutlin LM, Ackerman SJ, Gleich GJ, et al. Stimulation of basophil and rat mast cell histamine release by eosinophil granule-derived cationic proteins[J]. J Immunol, 1984, 133(4):2180-2185.
[22] Bousquet J, Chanez P, Lacoste JY, et al. Eosinophilic inflammation in asthma[J]. N Engl J Med, 1990, 323(15):1033-1039.
[23] Beppu T, Ohta N, Gon S, et al. Eosinophil and eosinophil cationic protein in allergic rhinitis[J]. Acta Otolaryngol Suppl, 1994, 511:221-223.
[24] Bhandari CM, Baldwa VS. Relative value of peripheral blood, secretion and tissue eosinophilia in the diagnosis of different patterns of allergic rhinitis [J]. Ann Allergy, 1976, 37(4):280-284.
[25] Ohta N, Okazaki S, Fukase S, et al. Serum concentrations of eosinophil cationic protein and eosinophils of patients with Kimura’s disease[J]. Allergol Int, 2007, 56(1):45-49.
[26] Gauchat JF, Henchoz S, Mazzei G, et al. Induction of human IgE synthesis in B cells by mast cells and basophils[J]. Nature, 1993, 365(6444):340-343.
[27] Pawankar R, Okuda M, Yssel H, et al. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells[J]. J Clin Invest, 1997, 99(7):1492-1499.
[28] Wong KT, Shamsol S. Quantitative study of mast cells in Kimura’s disease[J]. J Cutan Pathol, 1999, 26(1):13-16.
[29] Dvorak AM. Basophils and mast cells: piecemeal degranulation in situ and ex vivo: a possible mechanism for cytokine-induced function in disease[J]. Immunol Ser, 1992, 57:169-271.
[30] Dvorak AM, Massey W, Warner J, et al. IgE-mediated anaphylactic degranulation of isolated human skin mast cells[J]. Blood, 1991, 77(3):569-578.
[31] Kawanami O, Ferrans VJ, Fulmer JD, et al. Ultrastructure of pulmonary mast cells in patients with fibrotic lung disorders[J]. Lab Invest, 1979, 40(6):717-734.
[32] Friedman MM, Kaliner M. In situ degranulation of human nasal mucosal mast cells: ultrastructural features and cell-cell associations[J]. J Allergy Clin Immunol, 1985, 76(1):70-82.
[33] Aoki M, Kawana S. The ultrastructural patterns of mast cell degranulation in Kimura’s disease[J]. Dermatology: Basel, 1999, 199(1):35-39.
[34] Barata LT, Ying S, Meng Q, et al. IL-4-and IL-5-positive T lymphocytes, eosinophils, and mast cells in allergen-induced late-phase cutaneous reactions in atopic subjects[J]. J Allergy Clin Immunol, 1998, 101(2 Pt 1):222-230.
[35] Pawankar R, Ra C. IgE-Fc epsilonRI-mast cell axis in the allergic cycle[J]. Clin Exp Allergy, 1998, 28(Suppl 3):6-14.
[36] Ryan GB, Majno G. Acute inflammation. A review [J]. Am J Pathol, 1977, 86(1):183-276.
[37] Hugli TE, Müller-Eberhard HJ. Anaphylatoxins: C3a and C5a[J]. Adv Immunol, 1978, 26:1-53.
[38] Hugli TE. Structure and function of the anaphylatoxins[J]. Springer Semin Immunopathol, 1984, 7 (2/3):193-219.
[39] Abe M, Tanaka K, Kudo J, et al. Presence of C5apotentiating activity in the plasma of a patient with Kimura’s disease[J]. Allergy, 1994, 49(4):287-291.
[40] Yamaguchi Y, Hayashi Y, Sugama Y, et al. Highly purified murine interleukin 5(IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor[J]. J Exp Med, 1988, 167(5):1737-1742.
[41] Tai PC, Sun L, Spry CJ. Effects of IL-5, granulocyte/macrophage colony-stimulating factor (GM-CSF) and IL-3 on the survival of human blood eosinophils in vitro[J]. Clin Exp Immunol, 1991, 85(2):312-316.
[42] Tsukadaira A, Kitano K, Okubo Y, et al. A case of pathophysiologic study in Kimura’s disease: measurement of cytokines and surface analysis of eosinophils[J]. Ann Allergy Asthma Immunol, 1998, 81(5 Pt 1):423-427.
[43] Sugaya M, Suzuki T, Asahina A, et al. Kimura’s disease associated with ulcerative colitis: detection of IL-5 mRNA expression of peripheral blood mononuclear cells and colon lesion[J]. Acta Derm Venereol, 1998, 78(5):375-377.
[44] Tsukagoshi H, Nagashima M, Horie T, et al. Kimura’s disease associated with bronchial asthma presenting eosinophilia and hyperimmunoglobulinemia E which were attenuated by suplatast tosilate(IPD-1151T)[J]. Intern Med, 1998, 37(12):1064-1067.
[45] Katagiri K, Itami S, Hatano Y, et al. In vivo expression of IL-4, IL-5, IL-13 and IFN-gamma mRNAs in peripheral blood mononuclear cells and effect of cyclosporin A in a patient with Kimura’s disease[J]. Br J Dermatol, 1997, 137(6):972-977.
[46] Koike T, Enokihara H, Arimura H, et al. Serum concentrations of IL-5, GM-CSF, and IL-3 and the production by lymphocytes in various eosinophilia[J]. Am J Hematol, 1995, 50(2):98-102.
[47] Enokihara H, Koike T, Arimura H, et al. IL-5 mRNA expression in blood lymphocytes from patients with Kimura’s disease and parasite infection[J]. Am J Hematol, 1994, 47(2):69-73.
[48] Terada N, Konno A, Shirotori K, et al. Mechanism of eosinophil infiltration in the patient with subcutaneous angioblastic lymphoid hyperplasia with eosinophilia(Kimura’s disease). Mechanism of eosinophil chemotaxis mediated by candida antigen and IL-5[J]. Int Arch Allergy Immunol, 1994, 104(Suppl 11):18-20.
[49] Inoue C, Ichikawa A, Hotta T, et al. Constitutive gene expression of interleukin-5 in Kimura’s disease[J]. Br J Haematol, 1990, 76(4):554-555.
[50] Ohtsuka Y, Shimizu T, Fujii T, et al. Pranlukast regulates tumour growth by attenuating IL-4 production production in Kimura disease[J]. Eur J Pediatr, 2004, 163(7):416-417.
[51] Kimura Y, Pawankar R, Aoki M, et al. Mast cells and T cells in Kimura’s disease express increased levels of interleukin-4, interleukin-5, eotaxin and RANTES[J]. Clin Exp Allergy, 2002, 32(12):1787-1793.
[52] Ohta N, Fukase S, Suzuki Y, et al. Increase of Th2 and Tc1 cells in patients with Kimura’s disease[J]. Auris Nasus Larynx, 2011, 38(1):77-82.
[53] Benninghoff U, Cattaneo F, Aiuti A, et al. Clinical improvement and normalized Th1 cytokine profile in early and long-term interferon-alpha treatment in a suspected case of hyper-IgE syndrome[J]. Pediatr Allergy Immunol, 2008, 19(6):564-568.
[54] Teran LM, Mochizuki M, Bartels J, et al. Th1-and Th2-type cytokines regulate the expression and production of eotaxin and RANTES by human lung fibroblasts[J]. Am J Respir Cell Mol Biol, 1999, 20(4):777-786.
[55] Betts RJ, Kemeny DM. CD8+ T cells in asthma: friend or foe[J]. Pharmacol Ther, 2009, 121(2):123-131.
[56] Stock P, Kallinich T, Akbari O, et al. CD8+ T cells regulate immune responses in a murine model of allergen-induced sensitization and airway inflammation[J]. Eur J Immunol, 2004, 34(7):1817-1827.
[57] Ohta N, Fukase S, Fuse T, et al. Th1 and Th2 CD4+ T cells and Tc1 and Tc2 CD8+ T cells of patients with Wegener’s granulomatosis[J]. J Laryngol Otol, 2002, 116(8):605-609.
[58] Yamazaki K, Kawashima H, Sato S, et al. Increased CD45RO+ CD62L+ CD4+ T-cell subpopulation responsible for Th2 response in Kimura’s disease[J]. Hum Immunol, 2013, 74(9):1097-1102.
[59] Cooney LA, Towery K, Endres J, et al. Sensitivity and resistance to regulation by IL-4 during Th17 maturation[J]. J Immunol, 2011, 187(9):4440-4450.
[60] Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005, 6(11):1123-1132.
(本文采编 王晴)
[1] 姚琳,林江. 骨髓间质干细胞归巢至损伤组织的研究进展[J]. 国际口腔医学杂志, 2016, 43(2): 177-180.
[2] 谷楠 孙鑫 刘富萍 张宇娜 张雪 李海鹰. 脱落乳牙牙髓干细胞的生物学特性[J]. 国际口腔医学杂志, 2015, 42(6): 715-719.
[3] 孟耀 刘曼 白丁. 牙周膜肌成纤维细胞的体外培养及其标志物的表达时效[J]. 国际口腔医学杂志, 2015, 42(3): 285-289.
[4] 司家文1 郭礼和2 沈国芳1. 羊膜上皮细胞的生物学特性和骨向分化[J]. 国际口腔医学杂志, 2014, 41(5): 575-578.
[5] 唐宇欣1 金晗1 史册1 朱阳1 王丹丹1 王贺1 林崇韬2 孙宏晨1. 脂肪干细胞及其向成骨细胞分化的调控机制[J]. 国际口腔医学杂志, 2014, 41(4): 418-423.
[6] 彭正军 刘路 凌均棨. 细胞重编程及其影响因素[J]. 国际口腔医学杂志, 2014, 41(3): 300-303.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .