国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (2): 189-194.doi: 10.7518/gjkq.2017.02.015

• 综述 • 上一篇    下一篇

R-相热处理镍钛根管锉的力学性能和根管预备成形能力

杨殷杰1, 侯本祥1, 侯晓玫2   

  1. 1.首都医科大学口腔医院牙体牙髓病科 北京 100050;
    2.北京大学口腔医院第二门诊部 北京 100101
  • 收稿日期:2016-05-22 出版日期:2017-03-01 发布日期:2017-03-01
  • 通讯作者: 侯晓玫,副主任医师,博士,Email:houxiaomei1108@163.com
  • 作者简介:杨殷杰,主治医师,硕士,Email:44872109@qq.com
  • 基金资助:
    国家自然科学基金(81200826); 北京市医院管理局临床医学发展专项经费(XMLX201301)

Mechanical properties and shaping ability of R-phase heat treatment nickel-titanium instruments

Yang Yinjie, Hou Benxiang, Hou Xiaomei   

  1. 1. Dept. of Conservative Dentistry and Endodontics, Hospital of Stomatology, Capital Medical University, Beijing 100050, China;
    2. The Second Out Patient, Hospital of Stomatology, Peking University, Beijing 100101, China
  • Received:2016-05-22 Online:2017-03-01 Published:2017-03-01
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(81200826) and Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Fonding(XMLX201301).

摘要: 镍钛根管锉在根管治疗中的应用越来越广泛,为了提高镍钛根管锉的机械性能,R-相热处理技术被应用于其生产加工。本文对R-相热处理镍钛根管锉的制造工艺、弯曲性能、疲劳性能、扭转性能及预备成形能力等方面进行综述。

关键词: R-相, 热处理, 镍钛根管锉, 根管成形能力

Abstract: Nickel-titanium rotary instrument has been widely used in endodontic practice. Recently, R-phase heat treatment technique has been used in the manufacture of files to improve its mechanical properties. This article provides a review on manufacturing process, bending property, cyclic fatigue resistance, torsional resistance, and shaping ability of R-phase nickel-titanium instruments.

Key words: R-phase, heat treatment, nickel-titanium endodontic instrument, shaping ability

中图分类号: 

  • R781.05
[1] Walia HM, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of Nitinol root canal files[J]. J Endod, 1988, 14(7): 346-351.
[2] Hou X, Yahata Y, Hayashi Y, et al. Phase transfor-mation behaviour and bending property of twisted nickel-titanium endodontic instruments[J]. Int Endod J, 2011, 44(3):253-258.
[3] Larsen CM, Watanabe I, Glickman GN, et al. Cyclic fatigue analysis of a new generation of nickel tita-nium rotary instruments[J]. J Endod, 2009, 35(3): 401-403.
[4] Thompson SA. An overview of nickel-titanium alloys used in dentistry[J]. Int Endod J, 2000, 33(4):297- 310.
[5] Fayyad DM, Elhakim Elgendy AA. Cutting effi-ciency of twisted versus machined nickel-titanium endodontic files[J]. J Endod, 2011, 37(8):1143-1146.
[6] Ha JH, Kim SK, Cohenca N, et al. Effect of R-phase heat treatment on torsional resistance and cyclic fati-gue fracture[J]. J Endod, 2013, 39(3):389-393.
[7] Gambarini G, Giansiracusa Rubini A, Sannino G, et al. Cutting efficiency of nickel-titanium rotary and reciprocating instruments after prolonged use[J]. Odontology, 2016, 104(1):77-81.
[8] Tocci L, Plotino G, Al-Sudani D, et al. Cutting effi-ciency of instruments with different movements: a comparative study[J]. J Oral Maxillofac Res, 2015, 6 (1):e6.
[9] Gergi R, Arbab-Chirani R, Osta N, et al. Micro-computed tomographic evaluation of canal trans-portation instrumented by different kinematics rotary nickel-titanium instruments[J]. J Endod, 2014, 40 (8):1223-1227.
[10] Karataş E, Arslan H, Alsancak M, et al. Incidence of dentinal cracks after root canal preparation with Twisted File Adaptive instruments using different kinematics[J]. J Endod, 2015, 41(7):1130-1133.
[11] Karataş E, Gündüz HA, Kırıcı DÖ, et al. Dentinal crack formation during root canal preparations by the twisted file adaptive, ProTaper Next, ProTaper Universal, and WaveOne instruments[J]. J Endod, 2015, 41(2):261-264.
[12] Karataş E, Arslan H, Kırıcı DÖ, et al. Quantitative evaluation of apically extruded debris with Twisted File Adaptive instruments in straight root canals: reciprocation with different angles, adaptive motion and continuous rotation[J]. Int Endod J, 2016, 49 (4):382-385.
[13] Miyai K, Ebihara A, Hayashi Y, et al. Influence of phase transformation on the torsional and bending properties of nickel-titanium rotary endodontic in-struments[J]. Int Endod J, 2006, 39(2):119-126.
[14] Shen Y, Zhou HM, Wang Z, et al. Phase transfor-mation behavior and mechanical properties of ther-momechanically treated K3XF nickel-titanium ins-truments[J]. J Endod, 2013, 39(7):919-923.
[15] Gambarini G, Plotino G, Grande NM, et al. Mecha-nical properties of nickel-titanium rotary instruments produced with a new manufacturing technique[J]. Int Endod J, 2011, 44(4):337-341.
[16] Lopes HP, Gambarra-Soares T, Elias CN, et al. Com-parison of the mechanical properties of rotary instru-ments made of conventional nickel-titanium wire, M-wire, or nickel-titanium alloy in R-phase[J]. J Endod, 2013, 39(4):516-520.
[17] Elnaghy AM, Elsaka SE. Assessment of the mecha-nical properties of ProTaper Next Nickel-titanium rotary files[J]. J Endod, 2014, 40(11):1830-1834.
[18] Gambarini G, Grande NM, Plotino G, et al. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing me-thods[J]. J Endod, 2008, 34(8):1003-1005.
[19] Shen Y, Zhou H, Campbell L, et al. Fatigue and nanomechanical properties of K3XF nickel-titanium instruments[J]. Int Endod J, 2014, 47(12):1160-1167.
[20] Pérez-Higueras JJ, Arias A, de la Macorra JC. Cyclic fatigue resistance of K3, K3XF, and twisted file nickel-titanium files under continuous rotation or re-ciprocating motion[J]. J Endod, 2013, 39(12):1585- 1588.
[21] Rodrigues RC, Lopes HP, Elias CN, et al. Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium endodontic instru-ments[J]. J Endod, 2011, 37(11):1553-1557.
[22] Bhagabati N, Yadav S, Talwar S. An in vitro cyclic fatigue analysis of different endodontic nickel-tita-nium rotary instruments[J]. J Endod, 2012, 38(4): 515-518.
[23] Kim HC, Yum J, Hur B, et al. Cyclic fatigue and fracture characteristics of ground and twisted nickel-titanium rotary files[J]. J Endod, 2010, 36(1):147- 152.
[24] Shen Y, Riyahi AM, Campbell L, et al. Effect of a combination of torsional and cyclic fatigue pre-loading on the fracture behavior of K3 and K3XF instruments[J]. J Endod, 2015, 41(4):526-530.
[25] Zhao D, Shen Y, Peng B, et al. Effect of autoclave sterilization on the cyclic fatigue resistance of ther-mally treated Nickel-Titanium instruments[J]. Int Endod J, 2016, 49(10):990-995.
[26] Kiefner P, Ban M, De-Deus G. Is the reciprocating movement per se able to improve the cyclic fatigue resistance of instruments[J]. Int Endod J, 2014, 47 (5):430-436.
[27] Pedullà E, Grande NM, Plotino G, et al. Influence of continuous or reciprocating motion on cyclic fatigue resistance of 4 different nickel-titanium rotary instru-ments[J]. J Endod, 2013, 39(2):258-261.
[28] Gambarini G, Gergi R, Naaman A, et al. Cyclic fati-gue analysis of twisted file rotary NiTi instruments used in reciprocating motion[J]. Int Endod J, 2012, 45(9):802-806.
[29] Gambarini G, Rubini AG, Al Sudani D, et al. In-fluence of different angles of reciprocation on the cyclic fatigue of nickel-titanium endodontic instru-ments[J]. J Endod, 2012, 38(10):1408-1411.
[30] 杨殷杰, 侯本祥, 侯晓玫. 自适应往复运动镍钛根管锉TFA的疲劳折断性能研究[J]. 牙体牙髓牙周病学杂志, 2016, 26(3):163-166.
Yang YJ, Hou BX, Hou XM. Cyclic fatigue resistance of self-adaptive reciprocating instrument of TFA[J]. Chin J Conserv Dent, 2016, 26(3):163-166.
[31] Higuera O, Plotino G, Tocci L, et al. Cyclic fatigue resistance of 3 different nickel-titanium reciprocating instruments in artificial canals[J]. J Endod, 2015, 41 (6):913-915.
[32] Wycoff RC, Berzins DW. An in vitro comparison of torsional stress properties of three different rotary nickel-titanium files with a similar cross-sectional design[J]. J Endod, 2012, 38(8):1118-1120.
[33] Park SY, Cheung GS, Yum J, et al. Dynamic torsio-nal resistance of nickel-titanium rotary instruments [J]. J Endod, 2010, 36(7):1200-1204.
[34] Xu X, Eng M, Zheng Y, et al. Comparative study of torsional and bending properties for six models of nickel-titanium root canal instruments with different cross-sections[J]. J Endod, 2006, 32(4):372-375.
[35] Yum J, Cheung GS, Park JK, et al. Torsional strength and toughness of nickel-titanium rotary files[J]. J Endod, 2011, 37(3):382-386.
[36] Casper RB, Roberts HW, Roberts MD, et al. Compa-rison of autoclaving effects on torsional deformation and fracture resistance of three innovative endodontic file systems[J]. J Endod, 2011, 37(11):1572-1575.
[37] Bonaccorso A, Cantatore G, Condorelli GG, et al. Shaping ability of four nickel-titanium rotary instru-ments in simulated S-shaped canals[J]. J Endod, 2009, 35(6):883-886.
[38] Ebihara A, Yahata Y, Miyara K, et al. Heat treatment of nickel-titanium rotary endodontic instruments: effects on bending properties and shaping abilities[J]. Int Endod J, 2011, 44(9):843-849.
[39] 郭宇, 彭彬. 3种不同镍钛器械对弯曲根管成形能力的研究[J]. 口腔医学研究, 2014, 30(4):340-342, 347. Guo Y, Peng B. Shaping ability of three nickel-tita-nium rotary instruments in simulated resin canal[J]. J Oral Sci Res, 2014, 30(4):340-342, 347.
[40] Silva EJ, Tameirão MD, Belladonna FG, et al. Quan-titative transportation assessment in simulated curved canals prepared with an adaptive movement system [J]. J Endod, 2015, 41(7):1125-1129.
[41] Hashem AA, Ghoneim AG, Lutfy RA, et al. Geo-metric analysis of root canals prepared by four rotary NiTi shaping systems[J]. J Endod, 2012, 38(7):996- 1000.
[42] Zhao D, Shen Y, Peng B, et al. Micro-computed tomography evaluation of the preparation of mesio-buccal root canals in maxillary first molars with Hy-flex CM, Twisted Files, and K3 instruments[J]. J Endod, 2013, 39(3):385-388.
[43] Capar ID, Ertas H, Ok E, et al. Comparative study of different novel nickel-titanium rotary systems for root canal preparation in severely curved root canals [J]. J Endod, 2014, 40(6):852-856.
[44] Ordinola-Zapata R, Bramante CM, Duarte MA, et al. Shaping ability of reciproc and TF adaptive systems in severely curved canals of rapid microCT-based prototyping molar replicas[J]. J Appl Oral Sci, 2014, 22(6):509-515.
[45] Pedullà E, Plotino G, Grande NM, et al. Shaping ability of two nickel-titanium instruments activated by continuous rotation or adaptive motion: a micro-computed tomography study[J]. Clin Oral Investig, 2016, 20(8):2227-2233.
[46] 仇宁, 王楚瑜, 刘宇飞, 等. 3种机用镍钛器械预备模拟弯曲根管的成形能力比较[J]. 上海口腔医学, 2016, 25(2):191-194. Qiu N, Wang CY, Liu YF, et al. Comparison of the shaping ability of three Ni-Ti rotary instruments in the preparation of simulated curved root canals[J]. Shanghai J Stomatol, 2016, 25(2):191-194.
[47] 孙海欧, 贾立辉, 王亦菁. ProTaper Gold和TF Ada-ptive根管预备后根管成形效果的比较研究[J]. 临床口腔医学杂志, 2016, 32(8):479-481. Sun HO, Jia LH, Wang YJ. Comparative evaluation on the effect of the shaping ability with ProTaper and TF Adaptive instruments[J]. J Clin Stomatol, 2016, 32(8):479-481.
[1] 夏茜综述 郭斌审校. 运用现代根管治疗技术去除根管内充填物的研究进展[J]. 国际口腔医学杂志, 2009, 36(3): 367-369,373.
[2] 张悦,夏海斌,. 碱热处理制备生物活性钛种植体[J]. 国际口腔医学杂志, 2007, 34(03): 216-219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[9] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 沈末伦,华成舸. 上皮间质转化及其调控基因Twist在肿瘤侵袭转移中的作用[J]. 国际口腔医学杂志, 2008, 35(S1): .