国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (2): 189-194.doi: 10.7518/gjkq.2017.02.015

• 综述 • 上一篇    下一篇

R-相热处理镍钛根管锉的力学性能和根管预备成形能力

杨殷杰1, 侯本祥1, 侯晓玫2   

  1. 1.首都医科大学口腔医院牙体牙髓病科 北京 100050;
    2.北京大学口腔医院第二门诊部 北京 100101
  • 收稿日期:2016-05-22 出版日期:2017-03-01 发布日期:2017-03-01
  • 通讯作者: 侯晓玫,副主任医师,博士,Email:houxiaomei1108@163.com
  • 作者简介:杨殷杰,主治医师,硕士,Email:44872109@qq.com
  • 基金资助:
    国家自然科学基金(81200826); 北京市医院管理局临床医学发展专项经费(XMLX201301)

Mechanical properties and shaping ability of R-phase heat treatment nickel-titanium instruments

Yang Yinjie, Hou Benxiang, Hou Xiaomei   

  1. 1. Dept. of Conservative Dentistry and Endodontics, Hospital of Stomatology, Capital Medical University, Beijing 100050, China;
    2. The Second Out Patient, Hospital of Stomatology, Peking University, Beijing 100101, China
  • Received:2016-05-22 Online:2017-03-01 Published:2017-03-01
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(81200826) and Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Fonding(XMLX201301).

摘要: 镍钛根管锉在根管治疗中的应用越来越广泛,为了提高镍钛根管锉的机械性能,R-相热处理技术被应用于其生产加工。本文对R-相热处理镍钛根管锉的制造工艺、弯曲性能、疲劳性能、扭转性能及预备成形能力等方面进行综述。

关键词: R-相, 热处理, 镍钛根管锉, 根管成形能力

Abstract: Nickel-titanium rotary instrument has been widely used in endodontic practice. Recently, R-phase heat treatment technique has been used in the manufacture of files to improve its mechanical properties. This article provides a review on manufacturing process, bending property, cyclic fatigue resistance, torsional resistance, and shaping ability of R-phase nickel-titanium instruments.

Key words: R-phase, heat treatment, nickel-titanium endodontic instrument, shaping ability

中图分类号: 

  • R781.05
[1] Walia HM, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of Nitinol root canal files[J]. J Endod, 1988, 14(7): 346-351.
[2] Hou X, Yahata Y, Hayashi Y, et al. Phase transfor-mation behaviour and bending property of twisted nickel-titanium endodontic instruments[J]. Int Endod J, 2011, 44(3):253-258.
[3] Larsen CM, Watanabe I, Glickman GN, et al. Cyclic fatigue analysis of a new generation of nickel tita-nium rotary instruments[J]. J Endod, 2009, 35(3): 401-403.
[4] Thompson SA. An overview of nickel-titanium alloys used in dentistry[J]. Int Endod J, 2000, 33(4):297- 310.
[5] Fayyad DM, Elhakim Elgendy AA. Cutting effi-ciency of twisted versus machined nickel-titanium endodontic files[J]. J Endod, 2011, 37(8):1143-1146.
[6] Ha JH, Kim SK, Cohenca N, et al. Effect of R-phase heat treatment on torsional resistance and cyclic fati-gue fracture[J]. J Endod, 2013, 39(3):389-393.
[7] Gambarini G, Giansiracusa Rubini A, Sannino G, et al. Cutting efficiency of nickel-titanium rotary and reciprocating instruments after prolonged use[J]. Odontology, 2016, 104(1):77-81.
[8] Tocci L, Plotino G, Al-Sudani D, et al. Cutting effi-ciency of instruments with different movements: a comparative study[J]. J Oral Maxillofac Res, 2015, 6 (1):e6.
[9] Gergi R, Arbab-Chirani R, Osta N, et al. Micro-computed tomographic evaluation of canal trans-portation instrumented by different kinematics rotary nickel-titanium instruments[J]. J Endod, 2014, 40 (8):1223-1227.
[10] Karataş E, Arslan H, Alsancak M, et al. Incidence of dentinal cracks after root canal preparation with Twisted File Adaptive instruments using different kinematics[J]. J Endod, 2015, 41(7):1130-1133.
[11] Karataş E, Gündüz HA, Kırıcı DÖ, et al. Dentinal crack formation during root canal preparations by the twisted file adaptive, ProTaper Next, ProTaper Universal, and WaveOne instruments[J]. J Endod, 2015, 41(2):261-264.
[12] Karataş E, Arslan H, Kırıcı DÖ, et al. Quantitative evaluation of apically extruded debris with Twisted File Adaptive instruments in straight root canals: reciprocation with different angles, adaptive motion and continuous rotation[J]. Int Endod J, 2016, 49 (4):382-385.
[13] Miyai K, Ebihara A, Hayashi Y, et al. Influence of phase transformation on the torsional and bending properties of nickel-titanium rotary endodontic in-struments[J]. Int Endod J, 2006, 39(2):119-126.
[14] Shen Y, Zhou HM, Wang Z, et al. Phase transfor-mation behavior and mechanical properties of ther-momechanically treated K3XF nickel-titanium ins-truments[J]. J Endod, 2013, 39(7):919-923.
[15] Gambarini G, Plotino G, Grande NM, et al. Mecha-nical properties of nickel-titanium rotary instruments produced with a new manufacturing technique[J]. Int Endod J, 2011, 44(4):337-341.
[16] Lopes HP, Gambarra-Soares T, Elias CN, et al. Com-parison of the mechanical properties of rotary instru-ments made of conventional nickel-titanium wire, M-wire, or nickel-titanium alloy in R-phase[J]. J Endod, 2013, 39(4):516-520.
[17] Elnaghy AM, Elsaka SE. Assessment of the mecha-nical properties of ProTaper Next Nickel-titanium rotary files[J]. J Endod, 2014, 40(11):1830-1834.
[18] Gambarini G, Grande NM, Plotino G, et al. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing me-thods[J]. J Endod, 2008, 34(8):1003-1005.
[19] Shen Y, Zhou H, Campbell L, et al. Fatigue and nanomechanical properties of K3XF nickel-titanium instruments[J]. Int Endod J, 2014, 47(12):1160-1167.
[20] Pérez-Higueras JJ, Arias A, de la Macorra JC. Cyclic fatigue resistance of K3, K3XF, and twisted file nickel-titanium files under continuous rotation or re-ciprocating motion[J]. J Endod, 2013, 39(12):1585- 1588.
[21] Rodrigues RC, Lopes HP, Elias CN, et al. Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium endodontic instru-ments[J]. J Endod, 2011, 37(11):1553-1557.
[22] Bhagabati N, Yadav S, Talwar S. An in vitro cyclic fatigue analysis of different endodontic nickel-tita-nium rotary instruments[J]. J Endod, 2012, 38(4): 515-518.
[23] Kim HC, Yum J, Hur B, et al. Cyclic fatigue and fracture characteristics of ground and twisted nickel-titanium rotary files[J]. J Endod, 2010, 36(1):147- 152.
[24] Shen Y, Riyahi AM, Campbell L, et al. Effect of a combination of torsional and cyclic fatigue pre-loading on the fracture behavior of K3 and K3XF instruments[J]. J Endod, 2015, 41(4):526-530.
[25] Zhao D, Shen Y, Peng B, et al. Effect of autoclave sterilization on the cyclic fatigue resistance of ther-mally treated Nickel-Titanium instruments[J]. Int Endod J, 2016, 49(10):990-995.
[26] Kiefner P, Ban M, De-Deus G. Is the reciprocating movement per se able to improve the cyclic fatigue resistance of instruments[J]. Int Endod J, 2014, 47 (5):430-436.
[27] Pedullà E, Grande NM, Plotino G, et al. Influence of continuous or reciprocating motion on cyclic fatigue resistance of 4 different nickel-titanium rotary instru-ments[J]. J Endod, 2013, 39(2):258-261.
[28] Gambarini G, Gergi R, Naaman A, et al. Cyclic fati-gue analysis of twisted file rotary NiTi instruments used in reciprocating motion[J]. Int Endod J, 2012, 45(9):802-806.
[29] Gambarini G, Rubini AG, Al Sudani D, et al. In-fluence of different angles of reciprocation on the cyclic fatigue of nickel-titanium endodontic instru-ments[J]. J Endod, 2012, 38(10):1408-1411.
[30] 杨殷杰, 侯本祥, 侯晓玫. 自适应往复运动镍钛根管锉TFA的疲劳折断性能研究[J]. 牙体牙髓牙周病学杂志, 2016, 26(3):163-166.
Yang YJ, Hou BX, Hou XM. Cyclic fatigue resistance of self-adaptive reciprocating instrument of TFA[J]. Chin J Conserv Dent, 2016, 26(3):163-166.
[31] Higuera O, Plotino G, Tocci L, et al. Cyclic fatigue resistance of 3 different nickel-titanium reciprocating instruments in artificial canals[J]. J Endod, 2015, 41 (6):913-915.
[32] Wycoff RC, Berzins DW. An in vitro comparison of torsional stress properties of three different rotary nickel-titanium files with a similar cross-sectional design[J]. J Endod, 2012, 38(8):1118-1120.
[33] Park SY, Cheung GS, Yum J, et al. Dynamic torsio-nal resistance of nickel-titanium rotary instruments [J]. J Endod, 2010, 36(7):1200-1204.
[34] Xu X, Eng M, Zheng Y, et al. Comparative study of torsional and bending properties for six models of nickel-titanium root canal instruments with different cross-sections[J]. J Endod, 2006, 32(4):372-375.
[35] Yum J, Cheung GS, Park JK, et al. Torsional strength and toughness of nickel-titanium rotary files[J]. J Endod, 2011, 37(3):382-386.
[36] Casper RB, Roberts HW, Roberts MD, et al. Compa-rison of autoclaving effects on torsional deformation and fracture resistance of three innovative endodontic file systems[J]. J Endod, 2011, 37(11):1572-1575.
[37] Bonaccorso A, Cantatore G, Condorelli GG, et al. Shaping ability of four nickel-titanium rotary instru-ments in simulated S-shaped canals[J]. J Endod, 2009, 35(6):883-886.
[38] Ebihara A, Yahata Y, Miyara K, et al. Heat treatment of nickel-titanium rotary endodontic instruments: effects on bending properties and shaping abilities[J]. Int Endod J, 2011, 44(9):843-849.
[39] 郭宇, 彭彬. 3种不同镍钛器械对弯曲根管成形能力的研究[J]. 口腔医学研究, 2014, 30(4):340-342, 347. Guo Y, Peng B. Shaping ability of three nickel-tita-nium rotary instruments in simulated resin canal[J]. J Oral Sci Res, 2014, 30(4):340-342, 347.
[40] Silva EJ, Tameirão MD, Belladonna FG, et al. Quan-titative transportation assessment in simulated curved canals prepared with an adaptive movement system [J]. J Endod, 2015, 41(7):1125-1129.
[41] Hashem AA, Ghoneim AG, Lutfy RA, et al. Geo-metric analysis of root canals prepared by four rotary NiTi shaping systems[J]. J Endod, 2012, 38(7):996- 1000.
[42] Zhao D, Shen Y, Peng B, et al. Micro-computed tomography evaluation of the preparation of mesio-buccal root canals in maxillary first molars with Hy-flex CM, Twisted Files, and K3 instruments[J]. J Endod, 2013, 39(3):385-388.
[43] Capar ID, Ertas H, Ok E, et al. Comparative study of different novel nickel-titanium rotary systems for root canal preparation in severely curved root canals [J]. J Endod, 2014, 40(6):852-856.
[44] Ordinola-Zapata R, Bramante CM, Duarte MA, et al. Shaping ability of reciproc and TF adaptive systems in severely curved canals of rapid microCT-based prototyping molar replicas[J]. J Appl Oral Sci, 2014, 22(6):509-515.
[45] Pedullà E, Plotino G, Grande NM, et al. Shaping ability of two nickel-titanium instruments activated by continuous rotation or adaptive motion: a micro-computed tomography study[J]. Clin Oral Investig, 2016, 20(8):2227-2233.
[46] 仇宁, 王楚瑜, 刘宇飞, 等. 3种机用镍钛器械预备模拟弯曲根管的成形能力比较[J]. 上海口腔医学, 2016, 25(2):191-194. Qiu N, Wang CY, Liu YF, et al. Comparison of the shaping ability of three Ni-Ti rotary instruments in the preparation of simulated curved root canals[J]. Shanghai J Stomatol, 2016, 25(2):191-194.
[47] 孙海欧, 贾立辉, 王亦菁. ProTaper Gold和TF Ada-ptive根管预备后根管成形效果的比较研究[J]. 临床口腔医学杂志, 2016, 32(8):479-481. Sun HO, Jia LH, Wang YJ. Comparative evaluation on the effect of the shaping ability with ProTaper and TF Adaptive instruments[J]. J Clin Stomatol, 2016, 32(8):479-481.
[1] 王宏媛,何露,张茹,郑德强,李红. 热处理连续旋转镍钛锉对重度弯曲根管成形能力的比较研究[J]. 国际口腔医学杂志, 2021, 48(3): 297-304.
[2] 夏茜综述 郭斌审校. 运用现代根管治疗技术去除根管内充填物的研究进展[J]. 国际口腔医学杂志, 2009, 36(3): 367-369,373.
[3] 张悦,夏海斌,. 碱热处理制备生物活性钛种植体[J]. 国际口腔医学杂志, 2007, 34(03): 216-219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .