Int J Stomatol ›› 2022, Vol. 49 ›› Issue (3): 349-355.doi: 10.7518/gjkq.2022051

• Reviews • Previous Articles     Next Articles

Differential expression of microRNA in gingival crevicular fluid of periodontitis and its regulatory mechanism on periodontitis

Qian Suting(),Ding Lingmin,Ji Yaning,Lin Jun.()   

  1. Dept. of Stomatology, The First Affiliated Hospital, Zhe-jiang University School of Medicine, Hangzhou 310003, China
  • Received:2021-07-06 Revised:2021-12-21 Online:2022-05-01 Published:2022-05-09
  • Contact: Jun. Lin E-mail:1176917636@qq.com;junlin2@126.com
  • Supported by:
    National Natural Science Foundation of China(81970978)

Abstract:

Periodontitis is an inflammatory disease characterised by the formation of periodontal pocket and the resorption of alveolar bone. It is the main cause of tooth loss in adults over 40 years old. The gingival crevicular fluid produced by the periodontal tissue can reflect the state of periodontal inflammation to a certain extent, and the expression level of microRNA (miRNA) in it changes according to the progression of periodontal inflammation, which can be used as an indicator of periodontal diagnosis. The expression levels of miR-146a and miR-223 can be altered significantly during perio-dontitis progression. They are currently the most potential biomarkers periodontitis diagnosis by using miRNA in gingival crevicular fluid. Different miRNAs can play different roles by regulating the different stages of the periodontitis signalling pathway, such as the binding of bacterial lipopolysaccharide and Toll-like receptor, nuclear factor-κB ligand signalling pathway, and the release of inflammatory factors. This review elaborates the expression differences and modulation mechanisms of miRNA in periodontitis gingival crevicular fluid with a view to offer novel insights and strategies for the accurate diagnosis of periodontitis by miRNA in gingival crevicular fluid.

Key words: gingival crevicular fluid, microRNA, periodontitis, Toll-like receptor, nuclear factor-κB ligand

CLC Number: 

  • R 781.4

TrendMD: 

Fig 1

miRNA signaling pathway in periodontitis modulation"

1 Cardoso EM, Reis C, Manzanares-Céspedes MC. Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases[J]. Post-grad Med, 2018, 130(1): 98-104.
2 Nisha KJ, Janam P, Harshakumar K. Identifying salivary transcriptome signatures for periodontal diagnosis[J]. J Nat Sci Biol Med, 2019, 10(2): 114-118.
3 He W, You M, Wan W, et al. Point-of-care periodontitis testing: biomarkers, current technologies, and perspectives[J]. Trends Biotechnol, 2018, 36(11): 1127-1144.
4 郭淑娟, 刘倩, 丁一. 牙周病和植体周病国际新分类简介[J]. 国际口腔医学杂志, 2019, 46(2): 125-134.
Guo SJ, Liu Q, Ding Y. A brief introduction of the new classification scheme for periodontal and peri-implant diseases and conditions[J]. Int J Stomatol, 2019, 46(2): 125-134.
5 Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis[J]. J Immunol Res, 2015, 2015: 615486.
6 Antezack A, Chaudet H, Tissot-Dupont H, et al. Rapid diagnosis of periodontitis, a feasibility study using MALDI-TOF mass spectrometry[J]. PLoS One, 2020, 15(3): e0230334.
7 Verhulst MJL, Teeuw WJ, Bizzarro S, et al. A rapid, non-invasive tool for periodontitis screening in a medical care setting[J]. BMC Oral Health, 2019, 19(1): 87.
8 Arias-Bujanda N, Regueira-Iglesias A, Balsa-Castro C, et al. Accuracy of single molecular biomarkers in saliva for the diagnosis of periodontitis: a systema-tic review and meta-analysis[J]. J Clin Periodontol, 2020, 47(1): 2-18.
9 Zhang Y, Kang N, Xue F, et al. Evaluation of salivary biomarkers for the diagnosis of periodontitis[J]. BMC Oral Health, 2021, 21(1): 266.
10 Yi J, Shen Y, Yang Y, et al. Direct MALDI-TOF profiling of gingival crevicular fluid sediments for pe-riodontitis diagnosis[J]. Talanta, 2021, 225: 121956.
11 Szafranski SP, Wos-Oxley ML, Vilchez-Vargas R, et al. High-resolution taxonomic profiling of the subgingival microbiome for biomarker discovery and periodontitis diagnosis[J]. Appl Environ Microbiol, 2015, 81(3): 1047-1058.
12 Arias-Bujanda N, Regueira-Iglesias A, Balsa-Castro C, et al. Accuracy of single molecular biomarkers in saliva for the diagnosis of periodontitis: a systema-tic review and meta-analysis[J]. J Clin Periodontol, 2020, 47(1): 2-18.
13 Santonocito S, Polizzi A, Palazzo G, et al. The emerging role of microRNA in periodontitis: pathophysiology, clinical potential and future molecular perspectives[J]. Int J Mol Sci, 2021, 22(11): 5456.
14 Rovas A, Puriene A, Snipaitiene K, et al. Analysis of periodontitis-associated miRNAs in gingival tissue, gingival crevicular fluid, saliva and blood plasma[J]. Arch Oral Biol, 2021, 126: 105125.
15 Lee RC, Feinbaum RL, Ambros V. The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14”[J]. Cell, 1993, 75(5): 843-854.
16 Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772): 901-906.
17 Yin Y, Yang W, Zhang L, et al. Long non-coding RNA ANRIL and its target microRNAs (microRNA-34a, microRNA-125a and microRNA-186) relate to risk stratification and prognosis in multiple myeloma[J]. Hematology, 2021, 26(1): 160-169.
18 Luan X, Zhou X, Trombetta-eSilva J, et al. micro-RNAs and periodontal homeostasis[J]. J Dent Res, 2017, 96(5): 491-500.
19 Radović N, Nikolić Jakoba N, Petrović N, et al. microRNA-146a and microRNA-155 as novel crevicular fluid biomarkers for periodontitis in non-diabetic and type 2 diabetic patients[J]. J Clin Periodontol, 2018, 45(6): 663-671.
20 Luan X, Zhou X, Naqvi A, et al. microRNAs and immunity in periodontal health and disease[J]. Int J Oral Sci, 2018, 10(3): 24.
21 De Guire V, Robitaille R, Tétreault N, et al. Circula-ting miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges[J]. Clin Biochem, 2013, 46(10/11): 846-860.
22 Jin SH, Zhou JG, Guan XY, et al. Development of an miRNA-array-based diagnostic signature for pe-riodontitis[J]. Front Genet, 2020, 11: 577585.
23 Brill N, Krasse B. The passage of tissue fluid into the clinically healthy gingival pocket[J]. Acta Odontol Scand, 1958, 16(3): 233-245.
24 Chambers DA, Crawford JM, Mukherjee S, et al. Aspartate aminotransferase increases in crevicular fluid during experimental periodontitis in beagle dogs[J]. J Periodontol, 1984, 55(9): 526-530.
25 Socransky SS, Haffajee AD, Goodson JM, et al. New concepts of destructive periodontal disease[J]. J Clin Periodontol, 1984, 11(1): 21-32.
26 陈崇崇, 钟良军. 龈沟液生物标志物在慢性牙周炎诊疗中的研究进展[J]. 口腔医学, 2019, 39(11): 1047-1052.
Chen CC, Zhong LJ. Research progress of gingival crevicular fluid biomarkers for diagnosis and treatment of chronic periodontitis[J]. Stomatology, 2019, 39(11): 1047-1052.
27 Becerik S, Öztürk VÖ, Atmaca H, et al. Gingival crevicular fluid and plasma acute-phase cytokine levels in different periodontal diseases[J]. J Perio-dontol, 2012, 83(10): 1304-1313.
28 Ghallab NA. Diagnostic potential and future directions of biomarkers in gingival crevicular fluid and saliva of periodontal diseases: review of the current evidence[J]. Arch Oral Biol, 2018, 87: 115-124.
29 Elazazy O, Amr K, Abd El Fattah A, et al. Evaluation of serum and gingival crevicular fluid micro-RNA-223, microRNA-203 and microRNA-200b expression in chronic periodontitis patients with and without diabetes type 2[J]. Arch Oral Biol, 2021, 121: 104949.
30 Khurshid Z, Warsi I, Moin SF, et al. Biochemical analysis of oral fluids for disease detection[J]. Adv Clin Chem, 2021, 100: 205-253.
31 Na HS, Park MH, Song YR, et al. Elevated micro-RNA-128 in periodontitis mitigates tumor necrosis factor-α response via p38 signaling pathway in ma-crophages[J]. J Periodontol, 2016, 87(9): e173-e182.
32 Xie YF, Shu R, Jiang SY, et al. Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues[J]. Int J Oral Sci, 2011, 3(3): 125-134.
33 Ghotloo S, Motedayyen H, Amani D, et al. Assessment of microRNA-146a in generalized aggressive periodontitis and its association with disease severity[J]. J Periodontal Res, 2019, 54(1): 27-32.
34 Saito A, Horie M, Ejiri K, et al. microRNA profiling in gingival crevicular fluid of periodontitis-a pilot study[J]. FEBS Open Bio, 2017, 7(7): 981-994.
35 Micó-Martínez P, García-Giménez JL, Seco-Cervera M, et al. MiR-1226 detection in GCF as potential biomarker of chronic periodontitis: a pilot study[J]. Med Oral Patol Oral Cir Bucal, 2018, 23(3): e308-e314.
36 Zhang Y, Li S, Yuan S, et al. microRNA-23a inhi-bits osteogenesis of periodontal mesenchymal stem cells by targeting bone morphogenetic protein signaling[J]. Arch Oral Biol, 2019, 102: 93-100.
37 Lamster IB, Ahlo JK. Analysis of gingival crevicular fluid as applied to the diagnosis of oral and systemic diseases[J]. Ann N Y Acad Sci, 2007, 1098: 216-229.
38 Lin W, Xiong L, Yang Z, et al. Severe periodontitis is associated with early-onset poststroke depression status[J]. J Stroke Cerebrovasc Dis, 2019, 28(12): 104413.
39 Gomes-Filho IS, Balinha IDSCE, da Cruz SS, et al. Moderate and severe periodontitis are positively associated with metabolic syndrome[J]. Clin Oral Investig, 2021, 25(6): 3719-3727.
40 Cho DH, Song IS, Choi J, et al. Risk of peripheral arterial disease in patients with periodontitis: a nationwide, population-based, matched cohort study[J]. Atherosclerosis, 2020, 297: 96-101.
41 Al-Rawi NH, Al-Marzooq F, Al-Nuaimi AS, et al. Salivary microRNA 155, 146a/b and 203: a pilot study for potentially non-invasive diagnostic biomarkers of periodontitis and diabetes mellitus[J]. PLoS One, 2020, 15(8): e0237004.
42 Su N, Teeuw WJ, Loos BG, et al. Development and validation of a screening model for diabetes mellitus in patients with periodontitis in dental settings[J]. Clin Oral Investig, 2020, 24(11): 4089-4100.
43 Asa’ad F, Garaicoa-Pazmiño C, Dahlin C, et al. Expression of microRNAs in periodontal and peri-implant diseases: a systematic review and meta-analysis[J]. Int J Mol Sci, 2020, 21(11): 4147.
44 Cekici A, Kantarci A, Hasturk H, et al. Inflammatory and immune pathways in the pathogenesis of pe-riodontal disease[J]. Periodontol 2000, 2014, 64(1): 57-80.
45 Ramadan DE, Hariyani N, Indrawati R, et al. Cytokines and chemokines in periodontitis[J]. Eur J Dent, 2020, 14(3): 483-495.
46 Zhang T, Wu J, Ungvijanpunya N, et al. Smad6 methylation represses NFκB activation and perio-dontal inflammation[J]. J Dent Res, 2018, 97(7): 810-819.
47 Du A, Zhao S, Wan L, et al. microRNA expression profile of human periodontal ligament cells under the influence of Porphyromonas gingivalis LPS[J]. J Cell Mol Med, 2016, 20(7): 1329-1338.
48 Jiang SY, Xue D, Xie YF, et al. The negative feedback regulation of microRNA-146a in human perio-dontal ligament cells after Porphyromonas gingivalis lipopolysaccharide stimulation[J]. Inflamm Res, 2015, 64(6): 441-451.
49 Moffatt CE, Lamont RJ. Porphyromonas gingivalis induction of microRNA-203 expression controls su-ppressor of cytokine signaling 3 in gingival epithelial cells[J]. Infect Immun, 2011, 79(7): 2632-2637.
50 Kajiya M, Giro G, Taubman MA, et al. Role of pe-riodontal pathogenic bacteria in RANKL-mediated bone destruction in periodontal disease[J]. J Oral Microbiol, 2010, 2(1): 5532.
51 Noh MK, Jung M, Kim SH, et al. Assessment of IL 6, IL 8 and TNF α levels in the gingival tissue of patients with periodontitis[J]. Exp Ther Med, 2013, 6(3): 847-851.
52 Song B, Zhang YL, Chen LJ, et al. The role of Toll-like receptors in periodontitis[J]. Oral Dis, 2017, 23(2): 168-180.
53 Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nat Immunol, 2010, 11(5): 373-384.
54 胡竹林, 赵诣, 李茵. 口腔龈沟液生物标志物的检测分析现状及临床应用前景展望[J]. 国际口腔医学杂志, 2019, 46(3): 308-315.
Hu ZL, Zhao Y, Li Y. Analysis status and clinical application prospect of biomarkers in oral gingival crevicular fluid[J]. Int J Stomatol, 2019, 46(3): 308-315.
[1] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[2] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[3] Li Liheng,Wang Rui,Wang Xiaoming,Zhang Zhiyi,Zhang Xuan,An Feng,Wang Qin,Zhang Fan. Effects of circular RNA hsa_circ_0085576 on cell migration and invasion of oral squamous cell carcinoma by regulating the microRNA-498/B-cell-specific Moloney murine leukemia virus integration site 1 axis [J]. Int J Stomatol, 2024, 51(1): 60-67.
[4] Luo Xiaojie,Wang Dexu,Chen Xiaotao. Relationship between periodontitis and ferroptosis based on bioinformatics analysis [J]. Int J Stomatol, 2023, 50(6): 661-668.
[5] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[6] Hu Jia,Wang Xiuqing,Lu Guoying,Huang Xiaojing.. Regenerative endodontic procedures for permanent tooth with immature apices in adult patients [J]. Int J Stomatol, 2023, 50(6): 686-695.
[7] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[8] Xu Zhibo,Meng Xiuping.. Research progress on mechanism of Enterococcus faecalis escaping host immune defense [J]. Int J Stomatol, 2023, 50(5): 613-617.
[9] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[10] Liang Zhiying,Zhao Yuanxi,Zhu Jiani,Su Qin.. Retrospective analysis of clinical data of 288 cases of endodontic microsurgery on anterior teeth [J]. Int J Stomatol, 2023, 50(2): 166-171.
[11] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[12] Li Qiong,Yu Weixian. Research progress on resveratrol for the treatment of periodontitis and its bioavailability [J]. Int J Stomatol, 2023, 50(1): 25-31.
[13] Huang Weikun,Xu Qiuyan,Zhou Ting.. Role of baicalin and mechanisms through which baicalin attenuates oxidative stress injury induced by lipopolysaccharide on macrophages [J]. Int J Stomatol, 2022, 49(5): 521-528.
[14] Zhou Jianpeng,Xie Xudong,Zhao Lei,Wang Jun.. Research progress on the roles and mechanisms of T-helper 17 cells and interleukin-17 in periodontitis [J]. Int J Stomatol, 2022, 49(5): 586-592.
[15] Chen Huiyu,Bai Mingru,Ye Ling.. Progress in understanding the correlations between semaphorin 3A and common oral diseases [J]. Int J Stomatol, 2022, 49(5): 593-599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .