Int J Stomatol ›› 2022, Vol. 49 ›› Issue (3): 343-348.doi: 10.7518/gjkq.2022059

• Reviews • Previous Articles     Next Articles

Research progress on adenosine monophosphate-activated protein kinase in periodontal disease

Li Guiping(),Qin Xu,Zhu Guangxun.()   

  1. Dept. of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
  • Received:2021-08-05 Revised:2021-12-02 Online:2022-05-01 Published:2022-05-09
  • Contact: Guangxun. Zhu E-mail:15692363353@163.com;zhuguangxun@163.com
  • Supported by:
    National Natural Science Foundation of China(81300883);Natural Science Foundation of Hubei Province(2019CFB688)

Abstract:

Periodontal disease is characterized by the pathological resorption of periodontal support tissue caused by the interaction of specific pathogenic bacteria and destructive immune response. As a key regulator of cellular energy, adenosine monophosphate-activated protein kinase (AMPK) participates in the regulation of the metabolism of fatty acids and glucose in important tissues and organs to maintain body homeostasis, and it has been studied extensively in metabolic diseases. Previous studies showed that AMPK can also participate in regulating periodontal bone metabolism, immune response, matrix metalloproteinase secretion, and cellular autophagy to regulate the occurrence and development of periodontal diseases, revealing the potential role of AMPK in the pathogenesis of periodontal disease and providing a new therapeutic target for its treatment. This review provides an overview of the research progress of AMPK in periodontal diseases.

Key words: periodontal disease, adenosine monophosphate-activated protein kinase, matrix metalloproteinases, inflammation, autophagy

CLC Number: 

  • R 781.4

TrendMD: 
1 Hardie DG, Schaffer BE, Brunet A. AMPK: an energy-sensing pathway with multiple inputs and outputs[J]. Trends Cell Biol, 2016, 26(3): 190-201.
2 Slots J. Periodontitis: facts, fallacies and the future[J]. Periodontol 2000, 2017, 75(1): 7-23.
3 Zhou RJ, Shen LL, Yang CZ, et al. Periodontitis may restrain the mandibular bone healing via disturbing osteogenic and osteoclastic balance[J]. Inflammation, 2018, 41(3): 972-983.
4 Liu N, Cao YG, Zhu GX. Expression of matrix metalloproteinases-2, -9 and reversion-inducing cysteine-rich protein with Kazal motifs in gingiva in periodontal health and disease[J]. Arch Oral Biol, 2017, 75: 62-67.
5 Jiang M, Li ZN, Zhu GX. The role of autophagy in the pathogenesis of periodontal disease[J]. Oral Dis, 2020, 26(2): 259-269.
6 Beg ZH, Stonik JA, Brewer HB Jr. Characterization and regulation of reductase kinase, a protein kinase that modulates the enzymic activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase[J]. Proc Natl Acad Sci U S A, 1979, 76(9): 4375-4379.
7 Munday MR, Campbell DG, Carling D, et al. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase[J]. Eur J Biochem, 1988, 175(2): 331-338.
8 Carling D. AMPK signalling in health and disease[J]. Curr Opin Cell Biol, 2017, 45: 31-37.
9 Tamaki N, Cristina Orihuela-Campos R, Inagaki Y, et al. Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model[J]. Free Radic Biol Med, 2014, 75: 222-229.
10 Zhang FB, Geng Y, Zhao HY, et al. Effects of huang-lian jiedu decoration in rat gingivitis[J]. Evid Based Complement Alternat Med, 2018, 2018: 8249013.
11 Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis[J]. J Immunol Res, 2015, 2015: 615486.
12 Araújo AA, Pereira ASBF, Medeiros CACX, et al. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis[J]. PLoS One, 2017, 12(8): e0183506.
13 Pereira ASBF, Brito GAC, Lima MLS, et al. Metformin hydrochloride-loaded PLGA nanoparticle in periodontal disease experimental model using diabetic rats[J]. Int J Mol Sci, 2018, 19(11): E3488.
14 Kanno Y, Ishisaki A, Kawashita E, et al. uPA attenuated LPS-induced inflammatory osteoclastogenesis through the plasmin/PAR-1/Ca2+/CaMKK/AMPK axis[J]. Int J Biol Sci, 2016, 12(1): 63-71.
15 Kanno Y, Maruyama C, Matsuda A, et al. uPA-derived peptide, Å6 is involved in the suppression of lipopolysaccaride-promoted inflammatory osteoclastogenesis and the resultant bone loss[J]. Immun Inflamm Dis, 2017, 5(3): 289-299.
16 Feng Y, Liu JQ, Liu HC. AMP-activated protein kinase acts as a negative regulator of high glucose-induced RANKL expression in human periodontal ligament cells[J]. Chin Med J (Engl), 2012, 125(18): 3298-3304.
17 Bae WJ, Park JS, Kang SK, et al. Effects of melatonin and its underlying mechanism on ethanol-stimulated senescence and osteoclastic differentiation in human periodontal ligament cells and cementoblasts[J]. Int J Mol Sci, 2018, 19(6): E1742.
18 Gu DR, Lee JN, Oh GS, et al. The inhibitory effect of beta-lapachone on RANKL-induced osteoclastogenesis[J]. Biochem Biophys Res Commun, 2017, 482(4): 1073-1079.
19 Ma YH, Song JL, Almassri HNS, et al. Minocycline-loaded PLGA electrospun membrane prevents alveolar bone loss in experimental peridontitis[J]. Drug Deliv, 2020, 27(1): 151-160.
20 Li H, Sun T, Liu C, et al. Photobiomodulation (450 nm) alters the infection of periodontitis bacteria via the ROS/MAPK/mTOR signaling pathway[J]. Free Radic Biol Med, 2020, 152: 838-853.
21 Wang P, Ma T, Guo D, et al. Metformin induces osteoblastic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells[J]. J Tissue Eng Regen Med, 2018, 12(2): 437-446.
22 Park KH, Cho EH, Bae WJ, et al. Role of PIN1 on in vivo periodontal tissue and in vitro cells[J]. J Periodontal Res, 2017, 52(3): 617-627.
23 Lee YM, Shin SI, Shin KS, et al. The role of sirtuin 1 in osteoblastic differentiation in human periodontal ligament cells[J]. J Periodontal Res, 2011, 46(6): 712-721.
24 Bae WJ, Auh QS, Kim GT, et al. Effects of sodium tri-and hexameta-phosphate in vitro osteoblastic differentiation in periodontal ligament and osteoblasts, and in vivo bone regeneration[J]. Differentiation, 2016, 92(5): 257-269.
25 Xu LY, Sun XJ, Zhu GX, et al. Local delivery of simvastatin maintains tooth anchorage during mechanical tooth moving via anti-inflammation property and AMPK/MAPK/NF-kB inhibition[J]. J Cell Mol Med, 2021, 25(1): 333-344.
26 Lee SY, Yi JK, Yun HM, et al. Expression of caveolin-1 in periodontal tissue and its role in osteoblastic and cementoblastic differentiation in vitro[J]. Calcif Tissue Int, 2016, 98(5): 497-510.
27 Liu T, Hu WY, Zou X, et al. Human periodontal ligament stem cell-derived exosomes promote bone regeneration by altering MicroRNA profiles[J]. Stem Cells Int, 2020, 2020: 8852307.
28 Huang LY, Sun HL, Song FF, et al. SIRT6 overexpression inhibits cementogenesis by suppressing glucose transporter 1[J]. J Cell Physiol, 2019, 234(4): 4005-4014.
29 Liu N, Zhou B, Zhu GX. Potential role of reversion-inducing cysteine-rich protein with kazal motifs (RECK) in regulation of matrix metalloproteinases (MMPs) expression in periodontal diseases[J]. Med Sci Monit, 2016, 22: 1936-1938.
30 Shindo S, Hosokawa Y, Hosokawa I, et al. Genipin inhibits MMP-1 and MMP-3 release from TNF-a-stimulated human periodontal ligament cells[J]. Biochimie, 2014, 107(Pt B): 391-395.
31 Yu YQ, Li XL, Mi J, et al. Resveratrol suppresses matrix metalloproteinase-2 activation induced by lipopolysaccharide in mouse osteoblasts via interactions with AMP-activated protein kinase and suppressor of cytokine signaling 1[J]. Molecules, 2018, 23(9): E2327.
32 Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015, 15(1): 30-44.
33 Díaz CM, Bullon B, Ruiz-Salmerón RJ, et al. Molecular inflammation and oxidative stress are shared mechanisms involved in both myocardial infarction and periodontitis[J]. J Periodontal Res, 2020, 55(4): 519-528.
34 Qin X, Hoda MN, Susin C, et al. Increased innate lymphoid cells in periodontal tissue of the murine model of periodontitis: the role of AMP-activated protein kinase and relevance for the human condition[J]. Front Immunol, 2017, 8: 922.
35 Chin YT, Hsieh MT, Lin CY, et al. 2, 3, 5, 4’-tetrahydroxystilbene-2-O-β-glucoside isolated from polyg-oni multiflori ameliorates the development of periodontitis[J]. Mediators Inflamm, 2016, 2016: 6953459.
36 Ramos-Junior ES, Pedram M, Lee RE, et al. CD73-dependent adenosine dampens interleukin-1β-induced CXCL8 production in gingival fibroblasts: association with heme oxygenase-1 and adenosine monophosphate-activated protein kinase[J]. J Periodontol, 2020, 91(2): 253-262.
37 Jeong GS, Lee DS, Li B, et al. Anti-inflammatory effects of lindenenyl acetate via heme oxygenase-1 and AMPK in human periodontal ligament cells[J]. Eur J Pharmacol, 2011, 670(1): 295-303.
38 Hagio-Izaki K, Yasunaga M, Yamaguchi M, et al. Lipopolysaccharide induces bacterial autophagy in epithelial keratinocytes of the gingival sulcus[J]. BMC Cell Biol, 2018, 19(1): 18.
39 Vidoni C, Ferraresi A, Secomandi E, et al. Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells[J]. Cell Commun Signal, 2019, 17(1): 98.
40 Evans M, Murofushi T, Tsuda H, et al. Combined effects of starvation and butyrate on autophagy-dependent gingival epithelial cell death[J]. J Periodontal Res, 2017, 52(3): 522-531.
41 Yang Z, Gao X, Zhou MJ, et al. Effect of metformin on human periodontal ligament stem cells cultured with polydopamine-templated hydroxyapatite[J]. Eur J Oral Sci, 2019, 127(3): 210-221.
42 Pei CZ, Zhang Y, Wang P, et al. Berberine alleviates oxidized low-density lipoprotein-induced macrophage activation by downregulating galectin-3 via the NF-κB and AMPK signaling pathways[J]. Phytother Res, 2019, 33(2): 294-308.
43 Soltani A, Salmaninejad A, Jalili-Nik M, et al. 5'-Adenosine monophosphate-activated protein kinase: a potential target for disease prevention by curcumin[J]. J Cell Physiol, 2019, 234(3): 2241-2251.
44 Meng HY, Shao DC, Li H, et al. Resveratrol improves neurological outcome and neuroinflammation following spinal cord injury through enhancing autophagy involving the AMPK/mTOR pathway[J]. Mol Med Rep, 2018, 18(2): 2237-2244.
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[3] Yang Xiaoyu,Yuan Quan.. Research progress on the role of extravascular fibrinogen deposition in mucosal diseases [J]. Int J Stomatol, 2023, 50(4): 457-462.
[4] Huang Dingming, Zhang Lan, Man Yi. Biologic bases of nature tooth-related maxillary sinus floor elevation [J]. Int J Stomatol, 2023, 50(3): 251-262.
[5] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[6] Liu Yi,Liu Yi.. Research progress on the regulation of bone remodeling by macrophage-derived exosomes [J]. Int J Stomatol, 2023, 50(1): 120-126.
[7] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[8] Cheng Yifan,Qin Xu,Jiang Ming,Zhu Guang-xun.. Research progress on innate lymphoid cells in periodontal diseases [J]. Int J Stomatol, 2023, 50(1): 32-36.
[9] Li Weiguang,Wu Yafei,Guo Shujuan.. Research progress on the use of inorganic nanoparticles in the diagnosis and treatment of periodontal disease [J]. Int J Stomatol, 2022, 49(6): 724-730.
[10] Ye Yulin,Jiang Liting,Gao Yiming.. Role of autophagy in salivary glands of Sjögren’s syndrome [J]. Int J Stomatol, 2022, 49(5): 556-560.
[11] Jiang Duan,Shen Daonan,Zhao Lei,Wu Yafei. Research progress on the relationship between new anti-inflammatory factor developmental endothelial locus-1 and periodontitis [J]. Int J Stomatol, 2022, 49(2): 244-248.
[12] Zhou Yi,Zhao Yuming. Research progress on various dental pulp regeneration scaffolds [J]. Int J Stomatol, 2022, 49(1): 19-26.
[13] Mu Xinyue,Liu Shutai. Research progress on motivational interviewing in the management of patients with periodontal disease [J]. Int J Stomatol, 2022, 49(1): 94-99.
[14] Bai Haoliang,Yang He,Zhao Lei. Research progress on periodontal disease risk assessment and prognosis judgment tools [J]. Int J Stomatol, 2021, 48(6): 696-702.
[15] Zhou Wanhang,Li Yanfei,Xu Ricong,Wan Qijun. Effects of non-surgical periodontal treatment on risk factors of chronic kidney disease and systematic inflammatory levels in patients with chronic kidney disease and periodontal disease: a Meta-analysis [J]. Int J Stomatol, 2021, 48(5): 528-535.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .