Int J Stomatol ›› 2022, Vol. 49 ›› Issue (2): 220-226.doi: 10.7518/gjkq.2022033

• Reviews • Previous Articles     Next Articles

Research progress on serum-free culture methods of human dental pulp stem cells and cell characterization

Fu Hengyi(),Wang Chenglin()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-06-06 Revised:2021-10-05 Online:2022-03-01 Published:2022-03-15
  • Contact: Chenglin Wang E-mail:962726878@qq.com;wxonet@163.com
  • Supported by:
    Sichuan Province Science and Technology Support Program(2019YFS0035);The Exploration and Creation Project of West China Hospital of Stomatology, Sichuan University(LCYJ2019-18)

Abstract:

Human dental pulp stem cells are a principal source in regenerative medicine. They have a property of multidirectional differentiation and have been used to treat various diseases, including type 1 diabetes and nervous system di-sease. Stem cells in dental pulp must be expanded in vitro to meet clinical needs. Conventional in vitro amplification me-thods require the use of medium supplemented with foetal bovine serum. However, serum-free culture methods are recommended because of the ethical and safety issues of fetal bovine serum. This review describes the composition of serum-free medium, the methods of cultivating human dental pulp stem cells and the characteristics of the cultured cells and o-ther related applications.

Key words: human dental pulp stem cells, serum-free culture, stem cell characterization

CLC Number: 

  • R34

TrendMD: 
[1] Mooney DJ, Powell C, Piana J, et al. Engineering dental pulp-like tissue in vitro[J]. Biotechnol Prog, 1996, 12(6): 865-868.
doi: 10.1021/bp960073f
[2] Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630.
doi: 10.1073/pnas.240309797 pmid: 11087820
[3] Potdar PD, Jethmalani YD. Human dental pulp stem cells: applications in future regenerative medicine[J]. World J Stem Cells, 2015, 7(5): 839-851.
doi: 10.4252/wjsc.v7.i5.839
[4] Beltrão-Braga PC, Pignatari GC, Maiorka PC, et al. Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells[J]. Cell Transplant, 2011, 20(11/12): 1707-1719.
doi: 10.3727/096368911X566235
[5] van der Valk J, Mellor D, Brands R, et al. The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture[J]. Toxicol In Vitro, 2004, 18(1): 1-12.
pmid: 14630056
[6] Thirumala S, Goebel WS, Woods EJ. Manufacturing and banking of mesenchymal stem cells[J]. Expert Opin Biol Ther, 2013, 13(5): 673-691.
doi: 10.1517/14712598.2013.763925 pmid: 23339745
[7] Gregory CA, Reyes E, Whitney MJ, et al. Enhanced engraftment of mesenchymal stem cells in a cutaneous wound model by culture in allogenic species-specific serum and administration in fibrin constructs[J]. Stem Cells, 2006, 24(10): 2232-2243.
pmid: 16763199
[8] Spees JL, Gregory CA, Singh H, et al. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy[J]. Mol Ther, 2004, 9(5): 747-756.
doi: 10.1016/j.ymthe.2004.02.012
[9] Murphy MB, Blashki D, Buchanan RM, et al. Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation[J]. Biomaterials, 2012, 33(21): 5308-5316.
doi: 10.1016/j.biomaterials.2012.04.007
[10] Nakashima M, Iohara K, Murakami M, et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study[J]. Stem Cell Res Ther, 2017, 8(1): 61.
doi: 10.1186/s13287-017-0506-5 pmid: 28279187
[11] Mochizuki M, Nakahara T. Establishment of xenogeneic serum-free culture methods for handling human dental pulp stem cells using clinically oriented in-vitro and in-vivo conditions[J]. Stem Cell Res Ther, 2018, 9(1): 25.
doi: 10.1186/s13287-017-0761-5 pmid: 29394956
[12] Coates DE, Alansary M, Friedlander L, et al. Dental pulp stem cells in serum-free medium for regenerative medicine[J]. J R Soc N Z, 2020, 50(1): 80-90.
doi: 10.1080/03036758.2019.1673447
[13] Hirata TM, Ishkitiev N, Yaegaki K, et al. Expression of multiple stem cell markers in dental pulp cells cultured in serum-free media[J]. J Endod, 2010, 36(7): 1139-1144.
doi: 10.1016/j.joen.2010.03.002
[14] Abdel Moniem EM, El-Batran MM, Halawa AM, et al. Optimizing a serum-free/xeno-free culture medium for culturing and promoting the proliferation of human dental pulp stem cells[J]. Stem Cell Investig, 2019, 6: 15.
doi: 10.21037/sci
[15] Kawase-Koga Y, Fujii Y, Yamakawa D, et al. Identification of neurospheres generated from human dental pulp stem cells in xeno-/serum-free conditions[J]. Regen Ther, 2020, 14: 128-135.
doi: 10.1016/j.reth.2019.11.006 pmid: 32099873
[16] Machado N, Duailibi SE, Santos JA, et al. Effects of glucose and glutamine concentrations in human dental pulp stem cells viability. An approach for cell transplantation[J]. Acta Cir Bras, 2014, 29(10): 658-666.
doi: 10.1590/S0102-8650201400160006
[17] Bakopoulou A, Apatzidou D, Aggelidou E, et al. Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects “stemness” properties[J]. Stem Cell Res Ther, 2017, 8(1): 247.
doi: 10.1186/s13287-017-0705-0 pmid: 29096714
[18] Xiao JY, Yang DW, Li QW, et al. The establishment of a chemically defined serum-free culture system for human dental pulp stem cells[J]. Stem Cell Res Ther, 2018, 9(1): 191.
doi: 10.1186/s13287-018-0928-8
[19] Qu CJ, Brohlin M, Kingham PJ, et al. Evaluation of growth, stemness, and angiogenic properties of dental pulp stem cells cultured in cGMP xeno-/serum-free medium[J]. Cell Tissue Res, 2020, 380(1): 93-105.
doi: 10.1007/s00441-019-03160-1
[20] 钟萌, 赵奎君, 马致洁. 人牙髓干细胞的无血清培养及其生物学特性[J]. 中国生物制品学杂志, 2014, 27(12): 1615-1619.
Zhong M, Zhao KJ, Ma ZJ. Serum-free culture and biological characters of human dental pulp stem cells[J]. Chin J Biologic, 2014, 27(12): 1615-1619.
[21] Karbanová J, Soukup T, Suchánek J, et al. Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium[J]. Cells Tissues Organs, 2011, 193(6): 344-365.
doi: 10.1159/000321160 pmid: 21071916
[22] Fujii S, Fujimoto K, Goto N, et al. Characterization of human dental pulp cells grown in chemically defined serum-free medium[J]. Biomed Rep, 2018, 8(4): 350-358.
[23] Shi ST, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp[J]. J Bone Miner Res, 2003, 18(4): 696-704.
doi: 10.1359/jbmr.2003.18.4.696
[24] Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
doi: 10.1080/14653240600855905 pmid: 16923606
[25] 王莹, 徐燕, 庞罡, 等. 无血清培养下富血小板纤维蛋白提取液对牙髓干细胞增殖分化的影响[J]. 口腔医学研究, 2018, 34(7): 712-716.
Wang Y, Xu Y, Pang G, et al. Effect of platelet-rich fibrin extract on proliferation and differentiation of dental pulp stem cells in serum-free culture[J]. J Oral Sci Res, 2018, 34(7): 712-716.
[26] Chase LG, Yang SF, Zachar V, et al. Development and characterization of a clinically compliant xeno-free culture medium in good manufacturing practice for human multipotent mesenchymal stem cells[J]. Stem Cells Transl Med, 2012, 1(10): 750-758.
doi: 10.5966/sctm.2012-0072
[27] Bonnamain V, Thinard R, Sergent-Tanguy S, et al. Human dental pulp stem cells cultured in serum-free supplemented medium[J]. Front Physiol, 2013, 4: 357.
doi: 10.3389/fphys.2013.00357 pmid: 24376422
[28] De Francesco F, Tirino V, Desiderio V, et al. Human CD34/CD90 ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries[J]. PLoS One, 2009, 4(8): e6537.
doi: 10.1371/journal.pone.0006537
[29] Rafiee F, Pourteymourfard-Tabrizi Z, Mahmoudian-Sani MR, et al. Differentiation of dental pulp stem cells into neuron-like cells[J]. Int J Neurosci, 2020, 130(2): 107-116.
doi: 10.1080/00207454.2019.1664518
[30] Ibarretxe G, Crende O, Aurrekoetxea M, et al. Neural crest stem cells from dental tissues: a new hope for dental and neural regeneration[J]. Stem Cells Int, 2012, 2012: 103503.
doi: 10.1155/2012/103503 pmid: 23093977
[31] Xiao L, Tsutsui T. Characterization of human dental pulp cells-derived spheroids in serum-free medium: stem cells in the core[J]. J Cell Biochem, 2013, 114(11): 2624-2636.
doi: 10.1002/jcb.24610 pmid: 23794488
[32] Jung J, Kim JW, Moon HJ, et al. Characterization of neurogenic potential of dental pulp stem cells cultured in xeno/serum-free condition: in vitro and in vivo assessment[J]. Stem Cells Int, 2016, 2016: 6921097.
[33] Ishkitiev N, Yaegaki K, Imai T, et al. High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium[J]. J Endod, 2012, 38(4): 475-480.
doi: 10.1016/j.joen.2011.12.011 pmid: 22414832
[34] Ishkitiev N, Yaegaki K, Kozhuharova A, et al. Pancreatic differentiation of human dental pulp CD117⁺ stem cells[J]. Regen Med, 2013, 8(5): 597-612.
doi: 10.2217/rme.13.42 pmid: 23998753
[35] Lee SY, Huang GW, Shiung JN, et al. Magnetic cryopreservation for dental pulp stem cells[J]. Cells Tissues Organs, 2012, 196(1): 23-33.
doi: 10.1159/000331247
[1] Xu Lin,Wang Ruyi,Gou Xinrui,Wang Xiaoli,Li Yu. Research progress on parathyroid hormone-related protein modulating mandibular condylar cartilage [J]. Int J Stomatol, 2021, 48(5): 549-555.
[2] Ma Xiaofang,Huang Yongqing,Shi Bing,Ma Jian. Application of twin model in etiology of cleft lip with or without cleft palate [J]. Int J Stomatol, 2021, 48(5): 512-519.
[3] Zhou Yulan,Shi Bing,Jia Zhonglin. Research advances on the characterization of the clinical features and genetics of palatocardiofacial syndrome [J]. Int J Stomatol, 2021, 48(5): 506-511.
[4] Deng Shiyong,Gong Ping,Tan Zhen. Effects of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 gene on the regulation of oral and systemic bone metabolism [J]. Int J Stomatol, 2021, 48(2): 198-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .