Int J Stomatol ›› 2019, Vol. 46 ›› Issue (3): 320-325.doi: 10.7518/gjkq.2019030

• Reviews • Previous Articles     Next Articles

Research progress on the role of special AT-rich sequence binding protein 2 in maxillofacial development and perio-dontal regeneration

Tingting Jia,Shiguo Yan()   

  1. Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
  • Received:2018-10-19 Revised:2019-01-03 Online:2019-05-01 Published:2019-06-05
  • Contact: Shiguo Yan E-mail:syan@sdu.edu.cn
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81200790);Key Research and Development Plan (Public Welfare Category) of Shandong(2017GSF218063);Natural Science Foundation of Shandong Province(ZR2012HQ028)

Abstract:

Special AT-rich sequence binding protein 2 (SATB2) is a tissue-specific nuclear matrix sequence binding protein. SATB2 has been identified as a molecular determinant of osteogenesis and osteoblast differentiation, plays a key role in maxillofacial development and is an effective regulator of periodontal regeneration. This article reviews the current status of regulation of maxillofacial development by SATB2 and its application in periodontal tissue engineering.

Key words: special AT-rich sequence binding protein 2, maxillofacial development, periodontal tissue regeneration

CLC Number: 

  • Q813

TrendMD: 
[1] Bode J, Benham C, Knopp A , et al. Transcriptional augmentation: modulation of gene expression by scaffold/matrix-attached regions (S/MAR elements)[J]. Crit Rev Eukaryot Gene Expr, 2000,10(1):73-90.
[2] Dobreva G, Dambacher J, Grosschedl R . SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression[J]. Genes Dev, 2003,17(24):3048-3061.
doi: 10.1101/gad.1153003
[3] FitzPatrick DR, Carr IM, McLaren L , et al. Identification of SATB2 as the cleft palate gene on 2q32-q33[J]. Hum Mol Genet, 2003,12(19):2491-2501.
doi: 10.1093/hmg/ddg248
[4] Szemes M, Gyorgy A, Paweletz C , et al. Isolation and characterization of SATB2, a novel AT-rich DNA binding protein expressed in development- and cell-specific manner in the rat brain[J]. Neurochem Res, 2006,31(2):237-246.
doi: 10.1007/s11064-005-9012-8
[5] Dobreva G, Chahrour M, Dautzenberg M , et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation[J]. Cell, 2006,125(5):971-986.
doi: 10.1016/j.cell.2006.05.012
[6] Brocato J, Costa M . SATB1 and 2 in colorectal cancer[J]. Carcinogenesis, 2015,36(2):186-191.
doi: 10.1093/carcin/bgu322
[7] Leone DP, Heavner WE, Ferenczi EA , et al. Satb2 regulates the differentiation of both callosal and subcerebral projection neurons in the developing cerebral cortex[J]. Cereb Cortex, 2015,25(10):3406-3419.
doi: 10.1093/cercor/bhu156
[8] Yokota T, Kanakura Y . Role of tissue-specific AT-rich DNA sequence-binding proteins in lymphocyte differentiation[J]. Int J Hematol, 2014,100(3):238-245.
doi: 10.1007/s12185-014-1602-2
[9] Zarate YA, Perry H, Ben-Omran T , et al. Further supporting evidence for the SATB2-associated syndrome found through whole exome sequencing[J]. Am J Med Genet A, 2015,167A(5):1026-1032.
[10] Döcker D, Schubach M, Menzel M , et al. Further delineation of the SATB2 phenotype[J]. Eur J Hum Genet, 2014,22(8):1034-1039.
doi: 10.1038/ejhg.2013.280
[11] Zarate YA, Fish JL . SATB2-associated syndrome: mechanisms, phenotype, and practical recommendations[J]. Am J Med Genet A, 2017,173(2):327-337.
doi: 10.1002/ajmg.a.38022
[12] Britanova O, Depew MJ, Schwark M , et al. Satb2 haploinsufficiency phenocopies 2q32-q33 deletions, whereas loss suggests a fundamental role in the coordination of jaw development[J]. Am J Hum Genet, 2006,79(4):668-678.
doi: 10.1086/508214
[13] Zhang J, Tu Q, Grosschedl R , et al. Roles of SATB2 in osteogenic differentiation and bone regeneration[J]. Tissue Eng Part A, 2011,17(13/14):1767-1776.
doi: 10.1089/ten.tea.2010.0503
[14] Tu Q, Zhang J, James L , et al. Cbfa1/Runx2-deficiency delays bone wound healing and locally delivered Cbfa1/Runx2 promotes bone repair in animal models[J]. Wound Repair Regen, 2007,15(3):404-412.
doi: 10.1111/wrr.2007.15.issue-3
[15] He L, Liu H, Shi L , et al. Expression and localization of special AT-rich sequence binding protein 2 in murine molar development and the pulp-dentin complex of human healthy teeth and teeth with pulpitis[J]. Exp Ther Med, 2017,14(4):3507-3512.
doi: 10.3892/etm.2017.4980
[16] Ge J, Guo S, Fu Y , et al. Dental follicle cells participate in tooth eruption via the RUNX2-MiR-31-SATB2 loop[J]. J Dent Res, 2015,94(7):936-944.
doi: 10.1177/0022034515578908
[17] Phan M, Conte F, Khandelwal KD , et al. Tooth agenesis and orofacial clefting: genetic brothers in arms[J] Hum Genet, 2016,135(12):1299-1327.
doi: 10.1007/s00439-016-1733-z
[18] Fish JL . Developmental mechanisms underlying variation in craniofacial disease and evolution[J]. Dev Biol, 2016,415(2):188-197.
doi: 10.1016/j.ydbio.2015.12.019
[19] Rainger JK, Bhatia S, Bengani H , et al. Disruption of SATB2 or its long-range cis-regulation by SOX9 causes a syndromic form of Pierre Robin sequence[J]. Hum Mol Genet, 2014,23(10):2569-2579.
doi: 10.1093/hmg/ddt647
[20] Bonilla-Claudio M, Wang J, Bai Y , et al. Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development[J]. Development, 2012,139(4):709-719.
doi: 10.1242/dev.073197
[21] Sheehan-Rooney K, Swartz ME, Lovely CB , et al. Bmp and Shh signaling mediate the expression of satb2 in the pharyngeal arches[J]. PLoS One, 2013,8(3):e59533.
doi: 10.1371/journal.pone.0059533
[22] Nazarali A, Puthucode R, Leung V , et al. Temporal and spatial expression of Hoxa-2 during murine palatogenesis[J]. Cell Mol Neurobiol, 2000,20(3):269-290.
doi: 10.1023/A:1007006024407
[23] Mao XY, Tang SJ . Effects of phenytoin on Satb2 and Hoxa2 gene expressions in mouse embryonic craniofacial tissue[J]. Biochem Cell Biol, 2010,88(4):731-735.
doi: 10.1139/O10-013
[24] Yang G, Li X, Yuan G , et al. The effects of osterix on the proliferation and odontoblastic differentiation of human dental papilla cells[J]. J Endod, 2014,40(11):1771-1777.
doi: 10.1016/j.joen.2014.04.012
[25] Yang X, Matsuda K, Bialek P , et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry syndrome[J]. Cell, 2004,117(3):387-398.
doi: 10.1016/S0092-8674(04)00344-7
[26] Hassan MQ, Gordon JA, Beloti MM , et al. A network connecting Runx2, SATB2, and the miR-23a-27a- 24-2 cluster regulates the osteoblast differentiation program[J]. Proc Natl Acad Sci USA, 2010,107(46):19879-19884.
doi: 10.1073/pnas.1007698107
[27] Deng Y, Wu S, Zhou H , et al. Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells[J]. Stem Cells Dev, 2013,22(16):2278-2286.
doi: 10.1089/scd.2012.0686
[28] Wei J, Shi Y, Zheng L , et al. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2[J]. J Cell Biol, 2012,197(4):509-521.
doi: 10.1083/jcb.201201057
[29] Zhen L, Jiang X, Chen Y , et al. MiR-31 is involved in the high glucose-suppressed osteogenic differentiation of human periodontal ligament stem cells by targeting Satb2[J]. Am J Transl Res, 2017,9(5):2384-2393.
[30] Hu N, Feng C, Jiang Y , et al. Regulative effect of Mir-205 on osteogenic differentiation of bone mesenchymal stem cells (BMSCs): possible role of SATB2/Runx2 and ERK/MAPK pathway[J]. Int J Mol Sci, 2015,16(5):10491-10506.
doi: 10.3390/ijms160510491
[31] Tang W, Li Y, Osimiri L , et al. Osteoblast-specific transcription factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation[J]. J Biol Chem, 2011,286(38):32995-33002.
doi: 10.1074/jbc.M111.244236
[32] Zuo C, Zhao X, Shi Y , et al. TNF-α inhibits SATB2 expression and osteoblast differentiation through NF-κB and MAPK pathways[J]. Oncotarget, 2017,9(4):4833-4850.
[33] Freude T, Braun KF, Haug A , et al. Hyperinsulinemia reduces osteoblast activity in vitro via upregulation of TGF-β[J]. J Mol Med (Berl), 2012,90(11):1257-1266.
doi: 10.1007/s00109-012-0948-2
[34] Dong W, Zhang P, Fu Y , et al. Roles of SATB2 in site-specific stemness, autophagy and senescence of bone marrow mesenchymal stem cells[J]. J Cell Physiol, 2015,230(3):680-690.
doi: 10.1002/jcp.24792
[35] Zhou P, Wu G, Zhang P , et al. SATB2-Nanog axis links age-related intrinsic changes of mesenchymal stem cells from craniofacial bone[J]. Aging (Albany NY), 2016,8(9):2006-2011.
[36] Wu G, Xu R, Zhang P , et al. Estrogen regulates stemness and senescence of bone marrow stromal cells to prevent osteoporosis via ERβ-SATB2 pathway[J]. J Cell Physiol, 2018,233(5):4194-4204.
doi: 10.1002/jcp.v233.5
[37] Gong Y, Qian Y, Yang F , et al. Lentiviral-mediated expression of SATB2 promotes osteogenic differentiation of bone marrow stromal cells in vitro and in vivo[J]. Eur J Oral Sci, 2014,122(3):190-197.
doi: 10.1111/eos.12122
[38] Yan SG, Zhang J, Tu Q , et al. Transcription factor and bone marrow stromal cells in osseointegration of dental implants[J]. Eur Cell Mater, 2013,26:263-271.
doi: 10.22203/eCM
[39] Yan SG, Zhang J, Tu QS , et al. Enhanced osseointegration of titanium implant through the local delivery of transcription factor SATB2[J]. Biomaterials, 2011,32(33):8676-8683.
doi: 10.1016/j.biomaterials.2011.07.072
[40] Hsiong SX, Mooney DJ . Regeneration of vascularized bone[J]. Periodontol 2000, 2006,41(1):109-122.
doi: 10.1111/prd.2006.41.issue-1
[41] Prabha RD, Kraft DCE, Harkness L , et al. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration[J]. J Tissue Eng Regen Med, 2018,12(3):e1537-e1548.
doi: 10.1002/term.v12.3
[1] Fan Lin,Sun Jiang.. Application of microneedles in stomatology [J]. Int J Stomatol, 2023, 50(4): 472-478.
[2] Zhengmou Dong,Rui Liu,Luchuan Liu,Xiujie Wen. Research progress on the seed cells in periodontal tissue regeneration [J]. Inter J Stomatol, 2019, 46(1): 48-54.
[3] Li Xinyi, Dong Wei. Enamel matrix protein in enhancing periodontal tissue regeneration [J]. Inter J Stomatol, 2015, 42(5): 600-605.
[4] vLu Shaowen, Shui Yanqing. Research progress on periodontal ligament stem cell [J]. Inter J Stomatol, 2013, 40(6): 769-772.
[5] Zhang Jing, Li Shu.. Application of controlled release technology in periodontal tissue regeneration [J]. Inter J Stomatol, 2013, 40(5): 616-618.
[6] Xiang Chenyang1, Zhang Linglin2,3, Li Wei2. . Application progress of enamel matrix protein in the area of stomatology [J]. Inter J Stomatol, 2012, 39(6): 766-769.
[7] Wang Cha, Xu Yan.. Effective releasing way of growth factors in periodontal tissue regeneration [J]. Inter J Stomatol, 2012, 39(2): 265-268.
[8] Tang Kunqi, Yan Fuhua.. Application of osteoprotegerin in periodontal tissue regeneration [J]. Inter J Stomatol, 2011, 38(5): 546-549.
[9] Sun Jing, Li Shu.. Periodontal ligament stem cell niche and periodontal tissue regeneration [J]. Inter J Stomatol, 2011, 38(4): 460-462.
[10] CHEN Xiao-xia1, SUN Qin-feng1,2.. Biological characteristics of special AT-rich sequence bingding protein-2 [J]. Inter J Stomatol, 2011, 38(3): 312-314.
[11] KONG Ning -jing1, LIU Jian-guo1, LI Hou-xuan2, YAN Fu-hua2.. Effects of lipopolysaccharide on biological activity of periodontal ligament cells [J]. Inter J Stomatol, 2011, 38(3): 370-372.
[12] HUANG Jing1, SONG Ai-mei1,2, YANG Pi-shan1,2.. Current research of cell sheet transplantation [J]. Inter J Stomatol, 2011, 38(2): 221-224.
[13] CHEN Fang, XU Yan.

The progress research of periodontal ligament stem cells

[J]. Inter J Stomatol, 2008, 35(6): 672-672~674.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .