Inter J Stomatol ›› 2016, Vol. 43 ›› Issue (3): 343-347.doi: 10.7518/gjkq.2016.03.020

Previous Articles     Next Articles

Regulation of mitogen-activated protein kinase in the odontoblast differentiation of dental pulp stem cells and pulp injury and reparation

Lin Ying1, Qin Wei1, Zou Rui2, Lin Zhengmei1   

  1. 1. Dept. of Conservative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; 2. Institute of Oral Diseases Research, Key Laboratory of Stomatology, The Affiliated Stomatological Hospital, Guangzhou Medical University, Guangzhou 510140, China) This study was supported by the National Natural Science Foundation of China(81271124).
  • Received:2015-06-25 Revised:2015-12-15 Online:2016-05-01 Published:2016-05-01

Abstract: Several more alternatives can be offered for the treatment of carious pulp disease and restoration of lost teeth by inducing the odontoblast differentiation of dental pulp stem cell(DPSC). Mitogen-activated protein kinases(MAPK), specifically P38MAPK, are involved in various cellular functions, such as cell proliferation, differentiation, and apoptosis, by transducing extracellular signal to the cell and nucleus through transcription factor phosphorylation. In addition, bone morphogenetic protein-2, mineral trioxide aggregate, and biodentin can induce the odontoblast differentiation of DPSC by regulating MAPK signaling pathway and certain scaffolds in tissue engineering. Moreover, the MAPK signaling pathway performs an important function in the migration, adhesion, and differentiation of DPSC during dental pulp injury. Based on the key function of MAPK signaling pathway, further study on the molecule, substrate, and mechanisms is crucial.

Key words: mitogen-activated protein kinase, dental pulp stem cell, signal transduction pathway, differentiation, mitogen-activated protein kinase, dental pulp stem cell, signal transduction pathway, differentiation

CLC Number: 

  • Q 55

TrendMD: 
[1] Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells(DPSC) in vitro and in vivo[J]. Proc Natl Acad Sci USA, 2000, 97(25):13625-13630.
[2] Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells[J]. J Dent Res, 2002, 81(8):531-535.
[3] Huang AH, Chen YK, Lin LM, et al. Isolation and characterization of dental pulp stem cells from a supernumerary tooth[J]. J Oral Pathol Med, 2008, 37(9):571-574.
[4] Harada H, Kettunen P, Jung HS, et al. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling[J]. J Cell Biol, 1999, 147(1):105-120.
[5] Téclès O, Laurent P, Zygouritsas S, et al. Activation of human dental pulp progenitor/stem cells in response to odontoblast injury[J]. Arch Oral Biol, 2005, 50(2):103-108.
[6] Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis[J]. Bone, 2001, 29(6):532-539.
[7] Blüthgen N, Legewie S. Systems analysis of MAPK signal transduction[J]. Essays Biochem, 2008, 45:95-107.
[8] Patil CS, Kirkwood KL. P38MAPK signaling in oralrelated diseases[J]. J Dent Res, 2007, 86(9):812-825.
[9] Ruch JV, Lesot H, Bègue-Kirn C. Odontoblast differentiation[J]. Int J Dev Biol, 1995, 39(1):51-68.
[10] Smith AJ, Cassidy N, Perry H, et al. Reactionary dentinogenesis[J]. Int J Dev Biol, 1995, 39(1):273-280.
[11] Qin W, Lin ZM, Deng R, et al. P38a MAPK is involved in BMP-2-induced odontoblastic differentiation of human dental pulp cells[J]. Int Endod J, 2012, 45(3):224-233.
[12] Zhao X, He W, Song Z, et al. Mineral trioxide aggregate promotes odontoblastic differentiation via mitogen-activated protein kinase pathway in human dental pulp stem cells[J]. Mol Biol Rep, 2012, 39(1):215-220.
[13] Luo Z, Kohli MR, Yu Q, et al. Biodentine induces human dental pulp stem cell differentiation through mitogen-activated protein kinase and calcium-/ calmodulin-dependent protein kinaseⅡpathways[J]. J Endod, 2014, 40(7):937-942.
[14] Simon SR, Berdal A, Cooper PR, et al. Dentin-pulp complex regeneration: from lab to clinic[J]. Adv Dent Res, 2011, 23(3):340-345.
[15] Zhang H, Liu S, Zhou Y, et al. Natural mineralized scaffolds promote the dentinogenic potential of dental pulp stem cells via the mitogen-activated protein kinase signaling pathway[J]. Tissue Eng Part A, 2012, 18(7/8):677-691.
[16] Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engenerring[J]. Crit Rev Oral Biol Med, 2004, 15(1):13-27.
[17] Fitzgerald M, Chiego DJ, Heys DR. Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth[J]. Arch Oral Biol, 1990, 35(9):707-715.
[18] Sloan AJ, Smith AJ. Stem cells and the dental pulp: potential roles in dentine regeneration and repair[J]. Oral Dis, 2007, 13(2):151-157.
[19] Hosoya S, Matsushima K, Ohbayashi E, et al. Stimulation of interleukin-1beta-independent interleukin-6 production in human dental pulp cells by lipopolysaccharide[J]. Biochem Mol Med, 1996, 59(2):138-143.
[20] Warfvinge J. Morphometric analysis of teeth with inflamed pulp[J]. J Dent Res, 1987, 66(1):78-83.
[21] Li D, Fu L, Zhang Y, et al. The effects of LPS on adhesion and migration of human dental pulp stem cells in vitro[J]. J Dent, 2014, 42(10):1327-1334.
[22] He W, Wang Z, Luo Z, et al. LPS promote the odontoblastic differentiation of human dental pulp stem cells via MAPK signaling pathway[J]. J Cell Physiol, 2015, 230(3):554-561.
[23] Simon S, Smith AJ, Berdal A, et al. The MAP kinase pathway is involved in odontoblast stimulation via p38 phosphorylation[J]. J Endod, 2010, 36(2):256-259.
[24] Güven G, Altun C, Günhan O, et al. Co-expression of cyclooxygenase-2 and vascular endothelial growth factor in inflamed human pulp: an immunohistochemical study[J]. J Endod, 2007, 33(1):18-20.
[25] Yoshida S. A scanning electron microscope study of vascular development in the dental papilla of prenatal rat molars[J]. Anat Embryol, 1991, 183(4):379-384.
[26] Botero TM, Son JS, Vodopyanov D, et al. MAPK signaling is required for LPS-induced VEGF in pulp stem cells[J]. J Dent Res, 2010, 89(3):264-269.
[27] Vandomme J, Touil Y, Ostyn P, et al. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation[J]. Stem Cells Dev, 2014, 23(8):839-851.
[28] Bikkavilli RK, Feigin ME, Malbon CC. p38 mitogenactivated protein kinase regulates canonical Wntbeta-catenin signaling by inactivation of GSK3beta [J]. J Cell Sci, 2008, 121(Pt 21):3598-3607.
[29] Faust D, Schmitt C, Oesch F, et al. Differential p38-dependent signalling in response to cellular stress and mitogenic stimulation in fibroblasts[J]. Cell Commun Signal, 2012, 10:6.
[30] Wood CD, Thornton TM, Sabio G, et al. Nuclear localization of P38MAPK in response to DNA damage [J]. Int J Biol Sci, 2009, 5(5):428-437.
[31] Gong X, Ming X, Deng P, et al. Mechanisms regulating the nuclear translocation of p38 MAP kinase[J]. J Cell Biochem, 2010, 110(6):1420-1429.
[32] Ruch JV. Odontoblast commitment and differentiation[J]. Biochem Cell Biol, 1998, 76(6):923-938.
(本文采编 王晴)
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Yu Lerong,Li Xiangwei,Ai Hong. Research progress on the stemness maintenance of dental pulp stem cells [J]. Int J Stomatol, 2023, 50(4): 463-471.
[3] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[4] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[5] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[6] Fu Hengyi,Wang Chenglin. Research progress on serum-free culture methods of human dental pulp stem cells and cell characterization [J]. Int J Stomatol, 2022, 49(2): 220-226.
[7] Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639.
[8] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[9] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[10] Qian Ying,Gong Jiaxing,Yu Mengfei,Liu Yu,Wei Dong,Zhu Ziyu,Lu Kejie,Wang Huiming. Diagnosis and treatment of ameloblastoma from molecular biology perspective [J]. Int J Stomatol, 2021, 48(5): 570-578.
[11] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[12] Yang Yeqing,Chen Ming,Wu Buling. Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 257-262.
[13] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
[14] Zhu Mingjing,Zhang Qingbin. Comparative review of growth factors inducing 3D in vitro cartilage formation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 270-277.
[15] Wang Runting,Fang Fuchun. Progress in research of non-coding RNAs in osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(2): 138-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .