Int J Stomatol ›› 2022, Vol. 49 ›› Issue (4): 404-411.doi: 10.7518/gjkq.2022063

• Original Articles • Previous Articles     Next Articles

Effect of Zn-doped bioactive glass nanoparticles on the mechanical properties of modified composite resin

Wang Luming1,2(),Cao Xiao1,Wu Linyue1,Li Yuncong1,Lei Bo3,Niu Lin1()   

  1. 1.Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi’an Jiaotong University, Xi’an 710004, China
    2.Dept. of Stomatology, The Second Affilia-ted Hospital of Xi’an Medical University, Xi’an 710038, China
    3.Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
  • Received:2021-12-10 Revised:2022-03-06 Online:2022-07-01 Published:2022-06-28
  • Contact: Lin Niu E-mail:29968646@qq.com;niulin@xjtu.edu.cn
  • Supported by:
    National Science Basic Research Plan in Shaanxi Province of China(2020JM-414)

Abstract:

Objective This study aimed to develop a novel composite resin modified using Zn-doped bioactive glass nanoparticles (Zn@BGN) with biological activity and to investigate the effect of Zn@BGN on the mechanical properties of the modified composite resin. Methods Three types of Zn@BGN with different ratios of zinc-doping ratios were synthesized using the sol-gel template method via the catalysis of dodecylamine. The optimum doping ratio of zinc was explored by performing a biological activity test in vitro. Three modified composite resin experimental groups were prepared by adding Zn@BGN with mass fractions of 10%, 15%, and 20%, and an unmodified composite resin served as the control group. The mechanical properties, such as flexural strength (FS), diametral tensile strength (DTS), compressive strength, and Vickers hardness, of the samples were tested using a universal material testing machine and a microhardness tester. ResultsZn@BGN prepared using the sol-gel template method showed relatively regular spherical particles with a diameter of approximately 150 nm and good monodispersity. In addition, it showed a good biological activity with 1.6%. No significant difference in mechanical properties was found between the modified groups and the control group when the ratios of Zn@BGN incorporation were 10% and 15% (P>0.05). However, the FS and DTS were significantly lower in the modified group with 20% incorporation than in the control group (P<0.05). Conclusion Zn@BGN featuring uniform particle size, good monodispersity, and excellent biological activity can be prepared using the sol-gel template method. Zn@BGN exerts no harmful effect on the mechanical properties of the modified composite resin with 15% incorporation.

Key words: zinc, bioactive glass nanoparticles, sol-gel template method, composite resin, mechanical properties

CLC Number: 

  • R 783.1

TrendMD: 

Tab 1

Different proportion of Zn@BGN mass fraction of components"

添加物质BGN1-Zn@BGN2-Zn@BGN6-Zn@BGN
ZnO01.62.66.4
CaO32.6323026.2
SiO258.258.258.258.2
P2O59.29.29.29.2

Tab 2

The composite resin mass fraction of each com-position"

材料对照组实验组1实验组2实验组3
Bis-GMA、TEGDMA28282828
CQ1111
DMAEMA1111
无机填料70605550
Zn@BGN0101520

Fig 1

TEM photos of Zn@BGN"

Fig 2

EDS element analysis diagram of Zn@BGN"

Fig 3

XRD spectrum of HA characteristic peaks"

Fig 4

Mechanical properties of modified composite resin"

1 Muduroglu R, Ionescu AC, Del Fabbro M, et al. Distribution of adhesive layer in class Ⅱ composite re-sin restorations before/after interproximal matrix application[J]. J Dent, 2020, 103: 103494.
2 Takahashi Y, Imazato S, Russell RR, et al. Influence of resin monomers on growth of oral streptococci[J]. J Dent Res, 2004, 83(4): 302-306.
3 郭晓伟. 不同功能性聚氨酯的合成及其在牙本质-复合树脂粘接界面的应用[D]. 长春: 吉林大学, 2020.
Guo XW. Synthesis of different functional polyurethanes and their application at the dentin-composite resin bonding interface[D]. Changchun: Jilin University, 2020.
4 Gao Y, Liang KN, Weir MD, et al. Enamel remine-ralization via poly(amido amine) and adhesive resin containing calcium phosphate nanoparticles[J]. J Dent, 2020, 92: 103262.
5 王振铭, 叶玲. 生物活性组织工程材料在口腔颌面部骨修复中的应用研究进展[J]. 口腔生物医学, 2021,12(2): 71-76.
Wang ZM, Ye L. Engineering bioactive materials for oral and maxillofacial bone regeneration[J]. Oral Biomed, 2021,12(2): 71-76.
6 Hooshmand S, Mollazadeh S, Akrami N, et al. Me-soporous silica nanoparticles and mesoporous bioactive glasses for wound management: from skin regeneration to cancer therapy[J]. Materials (Basel), 2021, 14(12): 3337.
7 Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay[J]. J Microbiol Me-thods, 2003, 54(2): 177-182.
8 郑佳富. 生物活性玻璃/改性明胶复合支架的制备及性能研究[D]. 广州: 华南理工大学, 2018.
Zheng JF. Research on preparation and properties of bioactive glass/gelatin methacryloyl composites sca-ffolds[D]. Guangzhou: South China University of Te-chnology, 2018.
9 Rámila A, Vallet-Regí M. Static and dynamic in vitro study of a sol-gel glass bioactivity[J]. Biomate-rials, 2001, 22(16): 2301-2306.
10 Hench LL. The story of bioglass[J]. J Mater Sci Mater Med, 2006, 17(11): 967-978.
11 Jones JR. Review of bioactive glass: from hench to hybrids[J]. Acta Biomater, 2013, 9(1): 4457-4486.
12 马安博. 生物活性玻璃的研究现状及发展趋势[J]. 粘接, 2018, 39(2): 56-60.
Ma AB. Current situation and development trend of bioactive glass[J]. Adhesion, 2018, 39(2): 56-60.
13 Hench LL. Bioceramics: from concept to clinic[J]. J Am Ceram Soc, 1991, 74(7): 1487-1510.
14 Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses[J]. J Biomed Mater Res, 2002, 61(2): 301-311.
15 陈晓峰, 李玉莉, 赵娜如. 溶胶-凝胶生物活性玻璃的纳米结构分析研究[J]. 硅酸盐通报, 2007, 26(2): 247-251.
Chen XF, Li YL, Zhao NR. Nano-structure analysis of the sol-gel derived bioactive glasses[J]. Bull Chin Ceram Soc, 2007, 26(2): 247-251.
16 杨为中. A-W生物活性玻璃陶瓷的研究和发展[J]. 生物医学工程学杂志, 2003, 20(3): 541-545.
Yang WZ. Research and development of A-W bio-active glass ceramic[J]. J Biomed Eng, 2003, 20(3): 541-545.
17 Hench LL. Bioceramics[J]. J Am Ceram Soc, 1998, 81(7): 1705-1728.
18 Jones JR, Tsigkou O, Coates EE, et al. Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells[J]. Biomaterials, 2007, 28(9): 1653-1663.
19 吴民行, 谢玉芬, 翟智皓, 等. 生物活性玻璃的制备与应用研究进展[J]. 人工晶体学报, 2019, 48(1): 137-143, 148.
Wu MH, Xie YF, Zhai ZH, et al. Research progress on preparation and applications of bioactive glasses[J]. J Synth Cryst, 2019, 48(1): 137-143, 148.
20 赵娜如. 生物活性玻璃微纳米粉体的模板仿生合成及其性能研究[D]. 广州: 华南理工大学, 2011.
Zhao NR. Biomimetic templating synthesis and pro-perties of the micro-nanoscale bioactive glasses[D]. Guangzhou: South China University of Technology, 2011.
21 胡庆. 用于牙髓损伤修复的新型微纳米生物活性玻璃的仿生制备及性能研究[D]. 广州: 华南理工大学, 2014.
Hu Q. Biomimetic preparation and characterization of the novel micro/nano-bioactive glasses for pulp repair[D]. Guangzhou: South China University of Technology, 2014.
22 梁绮明. 新型生物玻璃牙髓修复材料的制备与性能研究[D]. 广州: 华南理工大学, 2015.
Liang QM. Preparation and characterization of no-vel bioglass material for dental pulp repair[D]. Guangzhou: South China University of Technology, 2015.
23 Randolph LD, Palin WM, Leloup G, et al. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties[J]. Dent Mater, 2016, 32(12): 1586-1599.
24 甄风磊, 陈良, 黄从运. 牙科复合树脂中无机填料的研究进展[J]. 材料导报, 2016, 30(3): 29-32.
Zhen FL, Chen L, Huang CY. Research progress of inorganic fillers in dental composite resin[J]. Mater Rev, 2016, 30(3): 29-32.
25 Sideridou ID, Karabela MM. Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites[J]. Dent Mater, 2009, 25(11): 1315-1324.
26 郑治, 黄伯云, 向其军, 等. 生物玻璃填充牙科复合树脂材料的制备及其性能[J]. 中南大学学报(自然科学版), 2009, 40(1): 94-98.
Zheng Z, Huang BY, Xiang QJ, et al. Preparation and property of bioglass ceramics filled dental resins[J]. J Central South Univ (Sci Technol), 2009, 40(1): 94-98.
27 Condon JR, Ferracane JL. Reduced polymerization stress through non-bonded nanofiller particles[J]. Bio-materials, 2002, 23(18): 3807-3815.
28 Mortazavi V, Atai M, Fathi M, et al. The effect of nanoclay filler loading on the flexural strength of fiber-reinforced composites[J]. Dent Res J (Isfahan), 2012, 9(3): 273-280.
29 辛东嵘. 湿热环境中环氧树脂力学性能和界面破坏机理的研究[D]. 广州: 华南理工大学, 2013.
Xin DR. Mechanical properties and the interface fai-lure mechanism of epoxy resin under hygrothermal condition[D]. Guangzhou: South China University of Technology, 2013.
30 Schulze KA, Marshall SJ, Gansky SA, et al. Color stability and hardness in dental composites after accelerated aging[J]. Dent Mater, 2003, 19(7): 612-619.
31 何柏林, 熊磊. 金属表面纳米化及其对材料性能影响的研究进展[J]. 兵器材料科学与工程, 2016, 39(2): 116-120.
He BL, Xiong L. Research progress in effect of me-tal surface nanocrystallization on material properties[J]. Ordnance Mater Sci Eng, 2016, 39(2): 116-120.
[1] Xue Jing, Yang Jing.. Key points of evidence-based practice for the Class Ⅱ cavity composite resin restoration [J]. Int J Stomatol, 2023, 50(4): 375-387.
[2] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[3] Yang Guangmei,Wang Jian. Mechanical properties of monolithic zirconia crowns and its relationship with clinical application [J]. Int J Stomatol, 2022, 49(1): 79-84.
[4] Meng Xiuping,Hou Jianhua,Li Yiran,Sun Mengyao. Research progress on the selection and design of base materials in deep margin elevation [J]. Int J Stomatol, 2021, 48(3): 280-286.
[5] Chen Hongli,Yang Jing,Yin Gang,Li Haoyuan,Qiao Yan. Expression of zinc finger protein 32 in oral squamous cell carcinoma and its effect on oral squamous cell carcinoma stem cells [J]. Int J Stomatol, 2019, 46(6): 631-639.
[6] Liang Jichao, Wang Fen, Zhang Zhenghua, Pang Fusheng, Hou Meijuan, Zhang Fengying. Clinical evaluation of interproximal caries restoration with orthodontic elastic separators [J]. Inter J Stomatol, 2017, 44(4): 440-444.
[7] Yao Chenmin, Zhou Liqun, Huang Cui.. Selection of tooth-colored restorative material for worn anterior teeth [J]. Inter J Stomatol, 2017, 44(3): 363-367.
[8] Wang Dongjie1, Wu Bing2, Chen Xiaohong1.. Clinical experience in the anterior teeth aesthetic restoration using light-cured composite resin [J]. Inter J Stomatol, 2014, 41(2): 137-139.
[9] Wang Suping, Cheng Lei, Zhou Xuedong. Research progress on antibacterial nanoparticles in resin composite [J]. Inter J Stomatol, 2013, 40(6): 750-753.
[10] Wu Xingchen, Zhu Yaqin. Characteristics and evaluation of the clinical application of a self-adjusting file [J]. Inter J Stomatol, 2013, 40(6): 764-768.
[11] Qiu Haiyan1, Zhang Qian2. Research progress on fiber-reinforced composite resin-bonded fixed partial denture [J]. Inter J Stomatol, 2013, 40(3): 395-398.
[12] Su Weizhu1, Wang Zhejun1, Sa Yue1, Wang Yining1,2.. The bleaching agents on the impact of the composite resin [J]. Inter J Stomatol, 2012, 39(4): 537-539.
[13] Chen Ping.. Clinical observation of deep dental wedge-shaped defects with three different methods [J]. Inter J Stomatol, 2012, 39(2): 153-154.
[14] WANG Mi, YIN Shi -hai, TANG Yin, LIU Jia.. In vitro study of furcal perforation repaired with cobalt-chrome alloy inlays [J]. Inter J Stomatol, 2011, 38(3): 261-264.
[15] XU Hai-ping1, XING Lu1, SU Qin2.. Three dimensional finite element analysis of stress distribution in various class Ⅳ preparation designs with direct composite resin restoration [J]. Inter J Stomatol, 2011, 38(2): 150-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .