Int J Stomatol ›› 2022, Vol. 49 ›› Issue (4): 380-385.doi: 10.7518/gjkq.2022057

• Tooth Development • Previous Articles     Next Articles

Research progress on expression distribution and regulation mechanism of clock genes in tooth development

Zhao Manzhu1(),Song Jinlin2()   

  1. 1.Dept. of General Dentistry, Hospital of Stomatology, Chongqing Medical University, Chong-qing 401147, China
    2.Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, China
  • Received:2021-10-19 Revised:2022-03-02 Online:2022-07-01 Published:2022-06-28
  • Contact: Jinlin Song E-mail:501252@hospital.cqmu.edu.cn;songjinlin@hospital.cqmu.edu.cn
  • Supported by:
    National Natural Science Foundation of China Youth Science Foundation(82000997);Ge-neral Project of Chongqing Natural Science Foundation(cstc2020jcyj-msxmX0018);Project of Chongqing Graduate Tutor Team in 2019(dstd201903)

Abstract:

The emergence of chronobiology has brought the change from static thinking to dynamic thinking in life s-ciences. The effects and mechanism of clock genes in dentistry, especially those involved in tooth development, have been the focus of research. Dental hard tissue shows the characteristics of clock rhythm. The phenomenon of incremental growth lines in tooth (e.g., horizontal pattern of glaze column, Retzius and von Ebner lines) was the histologic evidence for this condition. However, the molecular mechanism of how clock genes participate in the regulation of periodic mine-ralization of dental hard tissues still requires elucidation and has long been one of the research focuses in this field. Recent studies have focused on the dynamic expression and regulation of clock genes in tooth morphogenesis, especially in dental hard tissue mineralization. This paper aims to review the current development in the studies of the expression distribution, role, and molecular mechanism of clock genes in tooth development.

Key words: clock gene, tooth development, expression, mineralization, regulation mechanism

CLC Number: 

  • R 78

TrendMD: 

Fig 1

Schematic diagram for the feedback loop of core clock genes"

Fig 2

Schematic diagram for the signal pathways of clock genes and clock-controlled genes"

1 Allada R, Bass J. Circadian mechanisms in medicine[J]. N Engl J Med, 2021, 384(6): 550-561.
2 Kuhlman SJ, Craig LM, Duffy JF. Introduction to chronobiology[J]. Cold Spring Harb Perspect Biol, 2018, 10(9): a033613.
3 Huang RC. The discoveries of molecular mechanisms for the circadian rhythm: the 2017 Nobel Prize in physiology or medicine[J]. Biomed J, 2018, 41(1): 5-8.
4 Lacruz RS, Hacia JG, Bromage TG, et al. The circadian clock modulates enamel development[J]. J Biol Rhythms, 2012, 27(3): 237-245.
5 Smith TM. Experimental determination of the perio-dicity of incremental features in enamel[J]. J Anat, 2006, 208(1): 99-113.
6 Iinuma Y, Suzuki M, Yokoyama M, et al. Daily incremental lines in sika deer (Cervus Nippon) dentine[J]. J Vet Med Sci, 2002, 64(9): 791-795.
7 Yamamoto T, Domon T, Takahashi S, et al. Twisted plywood structure of an alternating lamellar pattern in cellular cementum of human teeth[J]. Anat Embryol (Berl), 2000, 202(1): 25-30.
8 Dunlap JC. Molecular bases for circadian clocks[J]. Cell, 1999, 96(2): 271-290.
9 Brown SA, Kowalska E, Dallmann R. (Re)inventing the circadian feedback loop[J]. Dev Cell, 2012, 22(3): 477-487.
10 Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian Clock mutant mice[J]. Science, 2005, 308(5724): 1043-1045.
11 Kwon I, Choe HK, Son GH, et al. Mammalian molecular clocks[J]. Exp Neurobiol, 2011, 20(1): 18-28.
12 Okawa H, Egusa H, Nishimura I. Implications of the circadian clock in implant dentistry[J]. Dent Mater J, 2020, 39(2): 173-180.
13 Dierickx P, Vermunt MW, Muraro MJ, et al. Circa-dian networks in human embryonic stem cell-derived cardiomyocytes[J]. EMBO Rep, 2017, 18(7): 1199-1212.
14 Gallardo A, Molina A, Asenjo HG, et al. The mole-cular clock protein Bmal1 regulates cell differentiation in mouse embryonic stem cells[J]. Life Sci Al-liance, 2020, 3(5): e201900535.
15 Umemura Y, Maki I, Tsuchiya Y, et al. Human circadian molecular oscillation development using induced pluripotent stem cells[J]. J Biol Rhythms, 2019, 34(5): 525-532.
16 Kaneko H, Kaitsuka T, Tomizawa K. Response to stimulations inducing circadian rhythm in human induced pluripotent stem cells[J]. Cells, 2020, 9(3): E620.
17 Gréchez-Cassiau A, Rayet B, Guillaumond F, et al. The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation[J]. J Biol Chem, 2008, 283(8): 4535-4542.
18 Kowalska E, Ripperger JA, Hoegger DC, et al. NONO couples the circadian clock to the cell cycle[J]. Proc Natl Acad Sci U S A, 2013, 110(5): 1592-1599.
19 Hassan N, McCarville K, Morinaga K, et al. Tita- nium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells[J]. PLoS One, 2017, 12(8): e0183359.
20 Samsa WE, Vasanji A, Midura RJ, et al. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype[J]. Bone, 2016, 84: 194-203.
21 Chen YJ, Xu XM, Tan Z, et al. Age-related BMAL1 change affects mouse bone marrow stromal cell proliferation and osteo-differentiation potential[J]. Arch Med Sci, 2012, 8(1): 30-38.
22 Fu L, Patel MS, Bradley A, et al. The molecular clock mediates leptin-regulated bone formation[J]. Cell, 2005, 122(5): 803-815.
23 Min HY, Kim KM, Wee G, et al. Bmal1 induces osteoblast differentiation via regulation of BMP2 expression in MC3T3-E1 cells[J]. Life Sci, 2016, 162: 41-46.
24 Zheng L, Papagerakis S, Schnell SD, et al. Expression of clock proteins in developing tooth[J]. Gene Expr Patterns, 2011, 11(3/4): 202-206.
25 Janjić K, Kurzmann C, Moritz A, et al. Core circa-dian clock gene expression in human dental pulp-derived cells in response to L-mimosine, hypoxia and echinomycin[J]. Eur J Oral Sci, 2018, 126(4): 263-271.
26 Yang K, Wang Y, Ju Y, et al. p75 neurotrophin receptor regulates differential mineralization of rat ectomesenchymal stem cells[J]. Cell Prolif, 2017, 50(1): e12290.
27 杨琨, 李骏, 丰奇昊, 等. MAGE-D1对大鼠牙胚来源外胚间充质干细胞增殖迁移能力的影响[J]. 遵义医学院学报, 2018, 41(5): 569-575.
Yang K, Li J, Feng QH, et al. The effects of MAGE-D1 on proliferation and migration of ectomesenchymal stem cells originated from rat teeth germ[J]. J Zunyi Med Univ, 2018, 41(5): 569-575.
28 Zheng L, Ehardt L, McAlpin B, et al. The tick tock of odontogenesis[J]. Exp Cell Res, 2014, 325(2): 83-89.
29 Nirvani M, Khuu C, Utheim TP, et al. Circadian rhythms and gene expression during mouse molar tooth development[J]. Acta Odontol Scand, 2017, 75(2): 144-153.
30 Ohtsuka M, Shinoda H. Ontogeny of circadian dentinogenesis in the rat incisor[J]. Arch Oral Biol, 1995, 40(6): 481-485.
31 Ohtsuka-Isoya M, Hayashi H, Shinoda H. Effect of suprachiasmatic nucleus lesion on circadian dentin increment in rats[J]. Am J Physiol Regul Integr Comp Physiol, 2001, 280(5): R1364-R1370.
32 Papakyrikos AM, Arora M, Austin C, et al. Biological clocks and incremental growth line formation in dentine[J]. J Anat, 2020, 237(2): 367-378.
33 Huang WS, Zheng XQ, Yang M, et al. PER2-media-ted ameloblast differentiation via PPARγ/AKT1/β‑ catenin axis[J]. Int J Oral Sci, 2021, 13(1): 16.
34 Satou R, Shibukawa Y, Kimura M, et al. Light conditions affect rhythmic expression of aquaporin 5 and anoctamin 1 in rat submandibular glands[J]. Heliyon, 2019, 5(11): e02792.
35 Baeza-Raja B, Eckel-Mahan K, Zhang LY, et al. p75 neurotrophin receptor is a clock gene that regulates oscillatory components of circadian and metabolic networks[J]. J Neurosci, 2013, 33(25): 10221-10234.
36 Nirvani M, Khuu C, Tulek A, et al. Transcriptomic analysis of microRNA expression in enamel-produ-cing cells[J]. Gene, 2019, 688: 193-203.
[1] Wang Luodan,Fan Hong. Morphological characteristics of sella turcica and its relationship with malocclusion [J]. Int J Stomatol, 2023, 50(6): 653-660.
[2] Wang Gang,Chen Zhuo.. Reduction of the risk of caries after interproximal enamel reduction [J]. Int J Stomatol, 2023, 50(4): 395-400.
[3] Yu Lerong,Li Xiangwei,Ai Hong. Research progress on the stemness maintenance of dental pulp stem cells [J]. Int J Stomatol, 2023, 50(4): 463-471.
[4] Wang Qiqiu,Zhi Qinghui.. Research progress on treatments of enamel white spot lesions [J]. Int J Stomatol, 2022, 49(6): 717-723.
[5] Li Yuan-yuan,Chen Junyu,Cai He,Wan Qianbing. Effects of parathyroid hormone and parathyroid hormone-related peptide on hard dental tissue formation [J]. Int J Stomatol, 2021, 48(6): 703-710.
[6] Siying Tao,Kunneng Liang,Jiyao Li. Research advances in biomimetic peptides promoting tooth remineralization [J]. Inter J Stomatol, 2019, 46(1): 37-42.
[7] Luo Weidan, Li Mingyun, Zhou Xuedong, Cheng Lei. Application of nano-hydroxyapatite in the clinical treatment of oral diseases [J]. Inter J Stomatol, 2018, 45(2): 192-198.
[8] Xian Xuehong, Jiang Hongwei. Matrix vesicles and their relationship with cytoskeleton-associated proteins [J]. Inter J Stomatol, 2018, 45(2): 204-208.
[9] Chen Jing, Huang Xiaofeng.. Development of laser applications in orthodontics [J]. Inter J Stomatol, 2017, 44(6): 712-716.
[10] Zhang Xu, Xu Enxin, Ruan Min.. Correlation between Toll-like receptor 9 and head and neck squamous cell carcinoma [J]. Inter J Stomatol, 2017, 44(5): 596-601.
[11] Wang Yachong, Hu Deyu, Dong Ying, Tu Rui, Li Xue, Kong Heng. An epidemiologic survey of dental caries among school children in the rural area of Chengdu [J]. Inter J Stomatol, 2017, 44(1): 28-31.
[12] Chen Hui, Cheng Lei.. Research progress on anti-caries dental adhesives [J]. Inter J Stomatol, 2017, 44(1): 92-97.
[13] Zhou Chen, Ling Junqi. Epigenetics in tooth development and its implication in tooth regeneration [J]. Inter J Stomatol, 2016, 43(3): 318-324.
[14] Xiao Li1, Lin Yuxiang2, Ge Song3.. Recombination and expression of fimbriae protein for Porphyromonas gingivalis [J]. Inter J Stomatol, 2015, 42(6): 655-658.
[15] Zeng Suyun, Wang Jianguang. Effect of phosphatase and tensin homolog gene deleted on chromosome 10 in oral squamous cell carcinoma [J]. Inter J Stomatol, 2015, 42(3): 334-338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .