Int J Stomatol ›› 2022, Vol. 49 ›› Issue (4): 483-488.doi: 10.7518/gjkq.2022045

• Reviews • Previous Articles     Next Articles

Research progress on the stem cells from human exfoliated deciduous teeth in the regeneration and repair of oral tissue

Li Pei(),Lin Ling,Zhao Wei.()   

  1. Dept. of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2021-12-23 Revised:2022-04-06 Online:2022-07-01 Published:2022-06-28
  • Contact: Wei. Zhao E-mail:lipei25@mail2.sysu.edu.cn;zhaowei3@mail.sysu.edu.cn
  • Supported by:
    National Natural Sciences Foundation of China(81974146)

Abstract:

Stem cells from human exfoliated deciduous teeth (SHEDs) are a kind of dental stem cells extracted from the residual pulp of deciduous teeth. They are easy to obtain, store, and culture and have excellent self-renewal as well as multidirectional differentiation. SHEDs have obvious advantages compared with other mesenchymal stem cells. In recent studies, stem cell therapy using SHEDs has achieved good results in the regeneration and repair of a variety of oral tissues. This article describes the stemness maintenance and differentiation regulation of SHEDs and their advantages in stem cell therapy. Moreover, it reviews the research progress on SHEDs in pulp-dentin complex regeneration, periodontal tissue regeneration, bone regeneration, neuroprotection, and immune regulation.

Key words: stem cell from human exfoliated deciduous teeth, stem cell therapy, tissue regeneration, osteoanage-nesis

CLC Number: 

  • Q 254

TrendMD: 
1 Nicola F, Marques MR, Odorcyk F, et al. Stem cells from human exfoliated deciduous teeth modulate early astrocyte response after spinal cord contusion[J]. Mol Neurobiol, 2019, 56(1): 748-760.
2 Ko CS, Chen JH, Su WT. Stem cells from human exfoliated deciduous teeth: a concise review[J]. Curr Stem Cell Res Ther, 2020, 15(1): 61-76.
3 Miura M, Gronthos S, Zhao MR, et al. SHED: stem cells from human exfoliated deciduous teeth[J]. Proc Natl Acad Sci U S A, 2003, 100(10): 5807-5812.
4 Nait Lechguer A, Couble ML, Labert N, et al. Cell differentiation and matrix organization in engineered teeth[J]. J Dent Res, 2011, 90(5): 583-589.
5 Prahasanti C, Nugraha AP, Saskianti T, et al. Exfolia-ted human deciduous tooth stem cells incorporating carbonate apatite scaffold enhance BMP-2, BMP-7 and attenuate MMP-8 expression during initial alveo-lar bone remodeling in Wistar rats (Rattus norvegicus)[J]. Clin Cosmet Investig Dent, 2020, 12: 79-85.
6 Dai YY, Ni SY, Ma K, et al. Stem cells from human exfoliated deciduous teeth correct the immune imbalance of allergic rhinitis via Treg cells in vivo and in vitro [J]. Stem Cell Res Ther, 2019, 10(1): 39.
7 Fujii H, Matsubara K, Sakai K, et al. Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats[J]. Brain Res, 2015, 1613: 59-72.
8 Zhai Y, Wang YY, Rao NQ, et al. Activation and biological properties of human β defensin 4 in stem cells derived from human exfoliated deciduous teeth[J]. Front Physiol, 2019, 10: 1304.
9 Werle SB, Chagastelles P, Pranke P, et al. Hypoxia upregulates the expression of the pluripotency mar-kers in the stem cells from human deciduous teeth[J]. Clin Oral Investig, 2019, 23(1): 199-207.
10 Sukarawan W, Peetiakarawach K, Pavasant P, et al. Effect of Jagged-1 and Dll-1 on osteogenic differentiation by stem cells from human exfoliated deci-duous teeth[J]. Arch Oral Biol, 2016, 65: 1-8.
11 Han Y, Gong T, Zhang C, et al. HIF-1α stabilization enhances angio-/vasculogenic properties of SHED[J]. J Dent Res, 2020, 99(7): 804-812.
12 Dahake PT, Panpaliya NP, Kale YJ, et al. Response of stem cells from human exfoliated deciduous teeth (SHED) to three bioinductive materials-an in vitro experimental study[J]. Saudi Dent J, 2020, 32(1): 43-51.
13 Ma L, Makino Y, Yamaza H, et al. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine[J]. PLoS One, 2012, 7(12): e51777.
14 Wang HH, Zhong Q, Yang TS, et al. Comparative characterization of SHED and DPSCs during extended cultivation in vitro [J]. Mol Med Rep, 2018, 17(5): 6551-6559.
15 Chen YJ, Zhao Q, Yang X, et al. Effects of cobalt chloride on the stem cell marker expression and osteogenic differentiation of stem cells from human exfoliated deciduous teeth[J]. Cell Stress Chapero-nes, 2019, 24(3): 527-538.
16 Yao SQ, Tan LP, Chen H, et al. Potential research tool of stem cells from human exfoliated deciduous teeth: lentiviral bmi-1 immortalization with EGFP marker[J]. Stem Cells Int, 2019, 2019: 3526409.
17 Huang TY, Wang GS, Ko CS, et al. A study of the differentiation of stem cells from human exfoliated deciduous teeth on 3D silk fibroin scaffolds using static and dynamic culture paradigms[J]. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110563.
18 Oliveira Prado Bergamo MT, Vitor LLR, Lopes NM, et al. Angiogenic protein synthesis after photobiomodulation therapy on SHED: a preliminary study[J]. Lasers Med Sci, 2020, 35(9): 1909-1918.
19 Coyac BR, Chicatun F, Hoac B, et al. Mineralization of dense collagen hydrogel scaffolds by human pulp cells[J]. J Dent Res, 2013, 92(7): 648-654.
20 Rosa V, Zhang Z, Grande RH, et al. Dental pulp tissue engineering in full-length human root canals[J]. J Dent Res, 2013, 92(11): 970-975.
21 Gotlieb EL, Murray PE, Namerow KN, et al. An ultrastructural investigation of tissue-engineered pulp constructs implanted within endodontically treated teeth[J]. J Am Dent Assoc, 2008, 139(4): 457-465.
22 Huang CC, Narayanan R, Alapati S, et al. Exosomes as biomimetic tools for stem cell differentiation: applications in dental pulp tissue regeneration[J]. Biomaterials, 2016, 111: 103-115.
23 Zhang ZC, Nör F, Oh M, et al. Wnt/β-catenin signa-ling determines the vasculogenic fate of postnatal mesenchymal stem cells[J]. Stem Cells, 2016, 34(6): 1576-1587.
24 Wang XZ, Jong G, Lin LM, et al. EphB-EphrinB interaction controls odontogenic/osteogenic differen-tiation with calcium hydroxide[J]. J Endod, 2013, 39(10): 1256-1260.
25 Groppa E, Brkic S, Uccelli A, et al. EphrinB2/EphB4 signaling regulates non-sprouting angiogenesis by VEGF[J]. EMBO Rep, 2018, 19(5): e45054.
26 杨鑫, 李思洁, 赵玮. Wnt信号通路在调控牙髓干细胞多向分化及炎症损伤修复中的作用[J]. 国际口腔医学杂志, 2018, 45(3): 286-290.
Yang X, Li SJ, Zhao W. Wnt signaling pathway mediates the dental pulp stem cells in multipotential differentiation and inflammatory microenvironment[J]. Int J Stomatol, 2018, 45(3): 286-290.
27 Qiao YQ, Zhu LS, Cui SJ, et al. Local administration of stem cells from human exfoliated primary teeth attenuate experimental periodontitis in mice[J]. Chin J Dent Res, 2019, 22(3): 157-163.
28 Gao XL, Shen ZS, Guan ML, et al. Immunomodulatory role of stem cells from human exfoliated deci-duous teeth on periodontal regeneration[J]. Tissue Eng Part A, 2018, 24(17/18): 1341-1353.
29 Yang XT, Ma Y, Guo WH, et al. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration[J]. Theranostics, 2019, 9(9): 2694-2711.
30 Mussano F, Genova T, Petrillo S, et al. Osteogenic differentiation modulates the cytokine, chemokine, and growth factor profile of ASCs and SHED[J]. Int J Mol Sci, 2018, 19(5): E1454.
31 Yang C, Chen Y, Zhong LW, et al. Homogeneity and heterogeneity of biological characteristics in mesenchymal stem cells from human umbilical cords and exfoliated deciduous teeth[J]. Biochem Cell Biol, 2020, 98(3): 415-425.
32 Fu XR, Jin LY, Ma P, et al. Allogeneic stem cells from deciduous teeth in treatment for periodontitis in miniature swine[J]. J Periodontol, 2014, 85(6): 845-851.
33 Nowwarote N, Sukarawan W, Pavasant P, et al. Basic fibroblast growth factor regulates phosphate/pyrophosphate regulatory genes in stem cells isolated from human exfoliated deciduous teeth[J]. Stem Cell Res Ther, 2018, 9(1): 345.
34 Tu YY, Yang CY, Chen RS, et al. Effects of chlorhe-xidine on stem cells from exfoliated deciduous teeth[J]. J Formos Med Assoc, 2015, 114(1): 17-22.
35 Yang X, Zhao Q, Chen YJ, et al. Effects of graphene oxide and graphene oxide quantum dots on the osteogenic differentiation of stem cells from human exfoliated deciduous teeth[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 822-832.
36 Prahasanti C, Subrata LH, Saskianti T, et al. Combined hydroxyapatite scaffold and stem cell from human exfoliated deciduous teeth modulating alveolar bone regeneration via regulating receptor activator of nuclear factor-κb and osteoprotegerin system[J]. Iran J Med Sci, 2019, 44(5): 415-421.
37 Souza DC, Abreu HLV, Oliveira PV, et al. A fast degrading PLLA composite with a high content of functionalized octacalcium phosphate mineral phase induces stem cells differentiation[J]. J Mech Behav Biomed Mater, 2019, 93: 93-104.
38 Kitase Y, Sato Y, Ueda K, et al. A novel treatment with stem cells from human exfoliated deciduous teeth for hypoxic-ischemic encephalopathy in neonatal rats[J]. Stem Cells Dev, 2020, 29(2): 63-74.
39 Li Y, Yang YY, Ren JL, et al. Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats[J]. Stem Cell Res Ther, 2017, 8(1): 198.
40 Zhou LL, Liu W, Wu YM, et al. Oral mesenchymal stem/progenitor cells: the immunomodulatory masters[J]. Stem Cells Int, 2020, 2020: 1327405.
41 Whiting D, Chung WO, Johnson JD, et al. Characterization of the cellular responses of dental mesenchymal stem cells to the immune system[J]. J Endod, 2018, 44(7): 1126-1131.
42 Tunç H, Islam A, Kabadayı H, et al. Evaluation of low-level diode laser irradiation and various irrigant solutions on the biological response of stem cells from exfoliated deciduous teeth[J]. J Photochem Photobiol B, 2019, 191: 156-163.
43 Virag P, Hedesiu M, Soritau O, et al. Low-dose radia-tions derived from cone-beam CT induce transient DNA damage and persistent inflammatory reactions in stem cells from deciduous teeth[J]. Dentomaxillofac Radiol, 2019, 48(1): 20170462.
[1] Wang Jiaxi,Mingyue Lü,Yuan Quan. Research progress on sticky bone in oral tissue regeneration [J]. Int J Stomatol, 2023, 50(5): 594-602.
[2] Fan Lin,Sun Jiang.. Application of microneedles in stomatology [J]. Int J Stomatol, 2023, 50(4): 472-478.
[3] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[4] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[5] Zhao Wenjun,Chen Yu. Research progress on periodontal functional gradient membrane for guided tissue/bone regeneration [J]. Int J Stomatol, 2021, 48(4): 391-397.
[6] Wang Shiqi,Chang Yaqin,Chen Bin,Tan Baochun,Ni Yanhong. Comparison of clinical outcomes between using bone graft alone and the combination of bone graft with membrane for periodontal regeneration therapy: a systematic review and Meta-analysis [J]. Int J Stomatol, 2020, 47(6): 644-651.
[7] Sun Zhaoze,Liu Shuang,Li Shu. Axon guidance molecules and their role in oral tissue regeneration [J]. Int J Stomatol, 2019, 46(6): 680-686.
[8] Tingting Jia,Shiguo Yan. Research progress on the role of special AT-rich sequence binding protein 2 in maxillofacial development and perio-dontal regeneration [J]. Int J Stomatol, 2019, 46(3): 320-325.
[9] Zhengmou Dong,Rui Liu,Luchuan Liu,Xiujie Wen. Research progress on the seed cells in periodontal tissue regeneration [J]. Inter J Stomatol, 2019, 46(1): 48-54.
[10] Jiangxue Tian,Longyi Mo,Xiaoyue Jia,Chengcheng Liu,Xin. Xu. Role of transforming growth factor-β in periodontitis [J]. Inter J Stomatol, 2018, 45(5): 553-559.
[11] Lin Yunfeng, Li Songhang. Research progress on application of DNA origami in stem cell field [J]. Inter J Stomatol, 2018, 45(3): 249-254.
[12] Zhang Xiangyi, Liu Yali. Immune regulation of dental stem cells [J]. Inter J Stomatol, 2018, 45(3): 276-279.
[13] Liu Zhenzhen, Fang Jiao, Zhao Jinghui, Zou Jingting, Xiang Xingchen, Wang Jia, Zhou Yanmin. A review on recent developments in pluripotency of gingiva-derived mesenchymal stem cells [J]. Inter J Stomatol, 2018, 45(1): 55-58.
[14] Guan Wei, Wang Changning.. Application of acellular dermal matrix in periodontology [J]. Inter J Stomatol, 2017, 44(6): 669-673.
[15] Gu Nan, Sun Xin, Liu Fuping, Zhang Yuna, Zhang Xue, Li Haiying.. Biological characteristics of stem cells from human-exfoliated deciduous teeth [J]. Int J Stomatol, 2015, 42(6): 715-719.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .