Int J Stomatol ›› 2021, Vol. 48 ›› Issue (5): 614-620.doi: 10.7518/gjkq.2021098

• Reviews • Previous Articles    

Development of robotic surgery in otorhinolaryngology head and neck surgery

Zhang Gaowei(),Li Chunjie()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-02-26 Revised:2021-06-15 Online:2021-09-01 Published:2021-09-10
  • Contact: Chunjie Li E-mail:zhanggw0422@163.com;lichunjie07@qq.com
  • Supported by:
    Union Project of National Natural Science Foundation of China and Shenzhen Robot Basic Research Center(U1813-213);Department of Science and Technology Application Fundamental Project of Sichuan Province(2021YJ0129)

Abstract:

Surgical robots have superior operability, so they can provide surgeons with excellent vision, thereby enabling a precise and minimally invasive surgery in narrow anatomical spaces. Their application is widely described in otorhinolaryngology head and neck surgery. In contrast to traditional methods, robotic surgery avoids more invasive procedures, consequently reducing the effects on esthetics and function. As a result, the postoperative life quality of patients improves. This article summarizes the application of robotic surgery in otorhinolaryngology head and neck surgery in recent years, presents the shortcomings of surgical robots in exploration and practice, and proposes potential development directions.

Key words: oral and maxillofacial surgery, robotic surgery, transoral robotic surgery, neck dissection, computer assisted surgery, otorhinolaryngology head and neck surgery

CLC Number: 

  • R782.05

TrendMD: 
[1] 朱建华, 郭传瑸. 手术机器人系统在颅颌面外科中的应用及发展[J]. 华西口腔医学杂志, 2016, 34(5):534-538.
Zhu JH, Guo CB. Application and development of surgical robot systems in craniomaxillofacial surgery[J]. West China J Stomatol, 2016, 34(5):534-538.
[2] Nakayama M, Holsinger FC, Chevalier D, et al. The dawn of robotic surgery in otolaryngology-head and neck surgery[J]. Jpn J Clin Oncol, 2019, 49(5):404-411.
doi: 10.1093/jjco/hyz020 pmid: 30796834
[3] Golusiński W. Functional organ preservation surgery in head and neck cancer: transoral robotic surgery and beyond[J]. Front Oncol, 2019, 9:293.
doi: 10.3389/fonc.2019.00293 pmid: 31058091
[4] Park DA, Lee MJ, Kim SH, et al. Comparative safety and effectiveness of transoral robotic surgery versus open surgery for oropharyngeal cancer: a syste-matic review and meta-analysis[J]. Eur J Surg Oncol, 2020, 46(4 Pt A):644-649.
doi: 10.1016/j.ejso.2019.09.185
[5] Meccariello G, Cammaroto G, Montevecchi F, et al. Transoral robotic surgery for the management of obstructive sleep apnea: a systematic review and meta-analysis[J]. Eur Arch Otorhinolaryngol, 2017, 274(2):647-653.
doi: 10.1007/s00405-016-4113-3 pmid: 27221389
[6] Cambi J, Chiri ZM, De Santis S, et al. Outcomes in single-stage multilevel surgery for obstructive sleep apnea: transoral robotic surgery, expansion sphincter pharyngoplasty and septoplasty[J]. Int J Med Robot, 2019, 15(6):e2034.
[7] Turhan M, Bostanci A. Robotic tongue-base resection combined with tongue-base suspension for obstructive sleep apnea[J]. Laryngoscope, 2020, 130(9):2285-2291.
doi: 10.1002/lary.28443
[8] Cammaroto G, Stringa LM, Zhang H, et al. Alternative applications of trans-oral robotic surgery (TORS): a systematic review[J]. J Clin Med, 2020, 9(1):E201.
[9] Holsinger FC. A flexible, single-arm robotic surgical system for transoral resection of the tonsil and lateral pharyngeal wall: next-generation robotic head and neck surgery[J]. Laryngoscope, 2016, 126(4):864-869.
doi: 10.1002/lary.25724
[10] Tsang RK, Holsinger FC. Transoral endoscopic nasopharyngectomy with a flexible next-generation robotic surgical system[J]. Laryngoscope, 2016, 126(10):2257-2262.
doi: 10.1002/lary.v126.10
[11] Chen MM, Orosco RK, Lim GC, et al. Improved transoral dissection of the tongue base with a next-generation robotic surgical system[J]. Laryngoscope, 2018, 128(1):78-83.
doi: 10.1002/lary.v128.1
[12] Chan JYK, Tsang RK, Holsinger FC, et al. Prospective clinical trial to evaluate safety and feasibility of using a single port flexible robotic system for transoral head and neck surgery[J]. Oral Oncol, 2019, 94:101-105.
doi: 10.1016/j.oraloncology.2019.05.018
[13] Remacle M, Prasad V, Lawson G, et al. Transoral robotic surgery (TORS) with the Medrobotics FlexTM System: first surgical application on humans[J]. Eur Arch Otorhinolaryngol, 2015, 272(6):1451-1455.
doi: 10.1007/s00405-015-3532-x pmid: 25663191
[14] Lang S, Mattheis S, Hasskamp P, et al. A European multicenter study evaluating the flex robotic system in transoral robotic surgery[J]. Laryngoscope, 2017, 127(2):391-395.
doi: 10.1002/lary.26358
[15] Hussain T, Lang S, Haßkamp P, et al. The Flex robotic system compared to transoral laser microsurgery for the resection of supraglottic carcinomas: first results and preliminary oncologic outcomes[J]. Eur Arch Otorhinolaryngol, 2020, 277(3):917-924.
doi: 10.1007/s00405-019-05767-0 pmid: 31893297
[16] Tan Wen Sheng B, Wong P, Teo Ee Hoon C. Transoral robotic excision of laryngeal papillomas with Flex® Robotic System-a novel surgical approach[J]. Am J Otolaryngol, 2018, 39(3):355-358.
doi: 10.1016/j.amjoto.2018.03.011
[17] Persky MJ, Issa M, Bonfili JR, et al. Transoral surgery using the Flex Robotic System: initial experience in the United States[J]. Head Neck, 2018, 40(11):2482-2486.
doi: 10.1002/hed.v40.11
[18] Sethi N, Gouzos M, Padhye V, et al. Transoral robotic surgery using the Medrobotic Flex® system: the Adelaide experience[J]. J Robot Surg, 2020, 14(1):109-113.
doi: 10.1007/s11701-019-00941-2
[19] Chan JY, Tsang RK, Eisele DW, et al. Transoral robotic surgery of the parapharyngeal space: a case series and systematic review[J]. Head Neck, 2015, 37(2):293-298.
doi: 10.1002/hed.v37.2
[20] Duek I, Sviri GE, Billan S, et al. Minimally invasive surgery for resection of parapharyngeal space tumors[J]. J Neurol Surg B Skull Base, 2018, 79(3):250-256.
doi: 10.1055/s-0037-1607315
[21] Sethi N, Dale O, Vidhyadharan S, et al. Transoral robotic narrow field oropharyngectomy for tumours of the parapharyngeal space[J]. Int J Med Robot, 2020, 16(3):e2083.
[22] Duek I, Amit M, Sviri GE, et al. Combined endoscopic transcervical-transoral robotic approach for resection of parapharyngeal space tumors[J]. Head Neck, 2017, 39(4):786-790.
doi: 10.1002/hed.v39.4
[23] Walvekar RR, Peters G, Hardy E, et al. Robotic-assisted transoral removal of a bilateral floor of mouth ranulas[J]. World J Surg Oncol, 2011, 9:78.
doi: 10.1186/1477-7819-9-78 pmid: 21767364
[24] Capaccio P, Montevecchi F, Meccariello G, et al. Transoral robotic surgery for Hilo-parenchymal submandibular stones: step-by-step description and reasoned approach[J]. Int J Oral Maxillofac Surg, 2019, 48(12):1520-1524.
doi: 10.1016/j.ijom.2019.07.004
[25] Razavi C, Pascheles C, Samara G, et al. Robot-assisted sialolithotomy with sialendoscopy for the ma-nagement of large submandibular gland stones[J]. Laryngoscope, 2016, 126(2):345-351.
doi: 10.1002/lary.v126.2
[26] Bonawitz SC, Duvvuri U. Robotic-assisted FAMM flap for soft palate reconstruction[J]. Laryngoscope, 2013, 123(4):870-874.
doi: 10.1002/lary.23578
[27] Tsai YC, Liu SA, Lai CS, et al. Functional outcomes and complications of robot-assisted free flap oropharyngeal reconstruction[J]. Ann Plast Surg, 2017, 78(3 Suppl 2):S76-S82.
doi: 10.1097/SAP.0000000000001010
[28] Gorphe P, Temam S, Kolb F, et al. Cervical-transoral robotic oropharyngectomy and thin anterolate-ral thigh free flap[J]. Eur Ann Otorhinolaryngol Head Neck Dis, 2018, 135(1):71-74.
doi: S1879-7296(17)30132-1 pmid: 28927845
[29] Turner MT, Geltzeiler M, Albergotti WG, et al. Reconstruction of TORS oropharyngectomy defects wi-th the nasoseptal flap via transpalatal tunnel[J]. J Robot Surg, 2020, 14(2):311-316.
doi: 10.1007/s11701-019-00984-5
[30] Lai CS, Lu CT, Liu SA, et al. Robot-assisted microvascular anastomosis in head and neck free flap reconstruction: preliminary experiences and results[J]. Microsurgery, 2019, 39(8):715-720.
doi: 10.1002/micr.v39.8
[31] Nadjmi N. Transoral robotic cleft palate surgery[J]. Cleft Palate Craniofac J, 2016, 53(3):326-331.
doi: 10.1597/14-077
[32] Khan K, Dobbs T, Swan MC, et al. Trans-oral robo-tic cleft surgery (TORCS) for palate and posterior pharyngeal wall reconstruction: a feasibility study[J]. J Plast Reconstr Aesthet Surg, 2016, 69(1):97-100.
doi: 10.1016/j.bjps.2015.08.020
[33] Podolsky DJ, Fisher DM, Wong Riff KWY, et al. Infant robotic cleft palate surgery: a feasibility assessment using a realistic cleft palate simulator[J]. Plast Reconstr Surg, 2017, 139(2):455e-465e.
doi: 10.1097/PRS.0000000000003010
[34] Singh RP, Sung ES, Song CM, et al. Robot-assisted excision of the submandibular gland by a postauricular facelift approach: comparison with the conventional transcervical approach[J]. Br J Oral Maxillofac Surg, 2017, 55(10):1030-1034.
doi: S0266-4356(17)30723-4 pmid: 29122340
[35] Lira RB Chulam TC de Carvalho GB, et al. Retroauricular endoscopic and robotic versus conventio-nal neck dissection for oral cancer[J]. J Robot Surg, 2018, 12(1):117-129.
doi: 10.1007/s11701-017-0706-0
[36] Ji YB, Song CM, Bang HS, et al. Functional and cosmetic outcomes of robot-assisted neck dissection by a postauricular facelift approach for head and ne-ck cancer[J]. Oral Oncol, 2017, 70:51-57.
doi: 10.1016/j.oraloncology.2017.05.014
[37] Rao V, Subash A, Sinha P, et al. Modified facelift approach for posterior segmental mandibulectomy: a blend of oncology and cosmesis[J]. Eur Arch Otorhinolaryngol, 2020, 277(4):1205-1210.
doi: 10.1007/s00405-020-05793-3
[38] Rao V, Prasad R, Subash A, et al. Technique of flap elevation for robot assisted selective neck dissection via retroauricular approach: a surgeon’s guide[J]. J Robot Surg, 2020, 14(2):337-341.
doi: 10.1007/s11701-019-00992-5
[39] Kim CH, Chang JW, Choi EC, et al. Robotically assisted selective neck dissection in parotid gland cancer: preliminary report[J]. Laryngoscope, 2013, 123(3):646-650.
doi: 10.1002/lary.23716
[40] Zhu JH, Deng J, Liu XJ, et al. Prospects of robot-assisted mandibular reconstruction with fibula flap: comparison with a computer-assisted navigation system and freehand technique[J]. J Reconstr Microsurg, 2016, 32(9):661-669.
doi: 10.1055/s-0036-1584805
[41] Woo SY, Lee SJ, Yoo JY, et al. Autonomous bone reposition around anatomical landmark for robot-assisted orthognathic surgery[J]. J Craniomaxillofac Surg, 2017, 45(12):1980-1988.
doi: 10.1016/j.jcms.2017.09.001
[42] Ahn J, Choi H, Hong J, et al. Tracking accuracy of a stereo camera-based augmented reality navigation system for orthognathic surgery[J]. J Oral Maxillofac Surg, 2019, 77(5): 1070.e1-1070.e11.
[43] Chao AH, Weimer K, Raczkowsky J, et al. Pre-programmed robotic osteotomies for fibula free flap man-dible reconstruction: a preclinical investigation[J]. Microsurgery, 2016, 36(3):246-249.
doi: 10.1002/micr.30013
[44] Augello M, Baetscher C, Segesser M, et al. Performing partial mandibular resection, fibula free flap reconstruction and midfacial osteotomies with a cold ablation and robot-guided Er: YAG laser osteotome (CARLO®)-a study on applicability and effectiveness in human cadavers[J]. J Craniomaxillofac Surg, 2018, 46(10):1850-1855.
doi: 10.1016/j.jcms.2018.08.001
[45] Chalmers R, Schlabe J, Yeung E, et al. Robot-assisted reconstruction in head and neck surgical oncology: the evolving role of the reconstructive microsurgeon[J]. ORL J Otorhinolaryngol Relat Spec, 2018, 80(3/4):178-185.
doi: 10.1159/000492787
[46] Tamaki A, Rocco JW, Ozer E. The future of robotic surgery in otolaryngology-head and neck surgery[J]. Oral Oncol, 2020, 101:104510.
doi: S1368-8375(19)30421-X pmid: 31841882
[1] Bi Xiaoqin,Xiong Maojing,Chen Lixian,Bai Yuanyan,Tian Li,Yang Hui. Nursing prevention and control of the novel coronavirus pneumonia in oral and maxillofacial surgery [J]. Int J Stomatol, 2020, 47(2): 244-248.
[2] Liu Hanghang, Luo En. Robotic surgery in craniofacial non-malignant diseases [J]. Inter J Stomatol, 2018, 45(1): 85-90.
[3] Wang Ke, Xiang Tao, Tang Yaling, Liang Xinhua. Application of 3D printing in oral and maxillofacial surgery education [J]. Inter J Stomatol, 2018, 45(1): 119-124.
[4] Liu Dongling1, Li Xiue2, Zhao Forong3. Oral hygiene after oral and maxillofacial surgery [J]. Inter J Stomatol, 2016, 43(6): 624-631.
[5] Li Kan, Liao Guiqing.. Research progress on sternoclavicular joint hypertrophy and dislocation following neck dissection [J]. Inter J Stomatol, 2015, 42(6): 724-727.
[6] Yang Zinan, Tang Enyi.. Biomarkers predictive of cervical metastasis in oral squamous cell carcinoma [J]. Inter J Stomatol, 2014, 41(2): 176-179.
[7] Xiao Xun1, Luo Yun2.. Risk and prevention in surgical perioperative period for the oral and maxillofacial region of the diabetic [J]. Inter J Stomatol, 2011, 38(6): 712-716.
[8] ZHONG Shi-chun, ZHANG Zhi-guang. Research progress of unilateral neck dissection incision [J]. Inter J Stomatol, 2009, 36(4): 459-461.
[9] GAO Chao, TANG Wei, TIAN Wei- dong. Application of image - guided surgical navigation system in or al and maxillofaci [J]. Inter J Stomatol, 2008, 35(4): 447-447~449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .