Int J Stomatol ›› 2021, Vol. 48 ›› Issue (5): 512-519.doi: 10.7518/gjkq.2021090

• Cleft Lip and Palate • Previous Articles     Next Articles

Application of twin model in etiology of cleft lip with or without cleft palate

Ma Xiaofang1(),Huang Yongqing2,Shi Bing3,Ma Jian2()   

  1. 1. School of Stomatology, Ningxia Medical University, Yinchuan 750003, China
    2. Dept. of Oral and Maxillofacial Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China
    3. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-02-23 Revised:2021-06-15 Online:2021-09-01 Published:2021-09-10
  • Contact: Jian Ma E-mail:1725365869@qq.com;majianhs310@163.com
  • Supported by:
    National Natural Science Foundation of China(81600853);Key Research and Development Project of Ningxia Hui Autonomous Region(2021BEG2043);School Level Research Project of Ningxia Medical University(XT2015018)

Abstract:

Cleft lip with or without cleft palate (CL/P) is one of the most common congenital cranio/maxillofacial deformities. The cause of the disease is complicated, which is considered to be a genetic disease mainly due to genetic and environmental factors. Twins, who share similar genetic information and environmental factors, are considered ideal models for studying the aetiology of inherited diseases. By reviewing the literature, this paper reviews the classification and identification of twins, the advantages and uses of the twin model and the application and progress of the twin model in the screening of susceptibility genes of CL/P to provide a new idea for further exploration of the causes of CL/P.

Key words: cleft lip with or without cleft palate, twins, monozygotic twin, epigenetics

CLC Number: 

  • R34

TrendMD: 
[1] Dixon MJ, Marazita ML, Beaty TH, et al. Cleft lip and palate: understanding genetic and environmental influences[J]. Nat Rev Genet, 2011, 12(3):167-178.
doi: 10.1038/nrg2933
[2] Kling RR, Taub PJ, Ye XQ, et al. Oral clefting in China over the last decade: 205 679 patients[J]. Plast Reconstr Surg Glob Open, 2014, 2(10):e236.
doi: 10.1097/GOX.0000000000000186
[3] Duan SJ, Shi JY, Shi B, et al. Association analysis of GWAS hits and non-syndromic cleft lip with/without palate with cleft alveolar in Han population of Western China[J]. Int J Clin Exp Pathol, 2020, 13(10):2576-2585.
[4] Impellizzeri A, Giannantoni I, Polimeni A, et al. Epidemiological characteristic of orofacial clefts and its associated congenital anomalies: retrospective study[J]. BMC Oral Health, 2019, 19(1):290.
doi: 10.1186/s12903-019-0980-5 pmid: 31870360
[5] Velázquez-Aragón JA, González-Del Angel A, Al-cántara-Ortigoza MA, et al. Screening of IRF6 variants in patients subjected to genetic association studies for nonsyndromic cleft lip/palate[J]. Cleft Palate Craniofac J, 2020: 1055665620980238.
[6] Grosen D, Bille C, Petersen I, et al. Risk of oral clefts in twins[J]. Epidemiology, 2011, 22(3):313-319.
doi: 10.1097/EDE.0b013e3182125f9c
[7] Christensen K, Fogh-Andersen P. Cleft lip (+/- cleft palate) in Danish twins, 1970-1990[J]. Am J Med Genet, 1993, 47(6):910-916.
doi: 10.1002/(ISSN)1096-8628
[8] Kocaaslan FND, Sendur S, Koçak I, et al. The comparison of Pierre Robin sequence and non-syndromic cleft palate[J]. J Craniofac Surg, 2020, 31(1):226-229.
doi: 10.1097/SCS.0000000000005961 pmid: 31725501
[9] Antwi P, Hong CS, Duran D, et al. A novel association of campomelic dysplasia and hydrocephalus with an unbalanced chromosomal translocation upstream of SOX9[J]. Cold Spring Harb Mol Case Stud, 2018, 4(3):a002766.
doi: 10.1101/mcs.a002766
[10] Gordon CT, Chopra M, Oufadem M, et al. MED13L loss-of-function variants in two patients with syndromic Pierre Robin sequence[J]. Am J Med Genet A, 2018, 176(1):181-186.
doi: 10.1002/ajmg.a.v176.1
[11] Dash S, Bhatt S, Falcon KT, et al. Med23 regulates Sox9 expression during craniofacial development[J]. J Dent Res, 2021, 100(4):406-414.
doi: 10.1177/0022034520969109 pmid: 33155500
[12] Ceribelli A, Selmi C. Epigenetic methods and twin studies[J]. Adv Exp Med Biol, 2020, 1253:95-104.
doi: 10.1007/978-981-15-3449-2_3 pmid: 32445092
[13] Scapoli L, Carinci F, Palmieri A, et al. Copy number variation analysis of twin pairs discordant for cleft lip with or without cleft palate[J]. Int J Immunopathol Pharmacol, 2019, 33:2058738419855873.
[14] Craig JM, Calais-Ferreira L, Umstad MP, et al. The value of twins for health and medical research: a third of a century of progress[J]. Twin Res Hum Genet, 2020, 23(1):8-15.
doi: 10.1017/thg.2020.4
[15] McNamara HC, Kane SC, Craig JM, et al. A review of the mechanisms and evidence for typical and atypical twinning[J]. Am J Obstet Gynecol, 2016, 214(2):172-191.
doi: S0002-9378(15)02235-8 pmid: 26548710
[16] Tan QH, Christiansen L, von Bornemann Hjelmborg J, et al. Twin methodology in epigenetic studies[J]. J Exp Biol, 2015, 218(Pt 1):134-139.
doi: 10.1242/jeb.107151
[17] Harika DJ, Sridevi E, Sai Sankar AJ, et al. Dermatoglyphic analysis in parents with cleft children: a comparative study[J]. Contemp Clin Dent, 2018, 9(Suppl 2):S291-S298.
[18] Neiswanger K, Mukhopadhyay N, Rajagopalan S, et al. Individuals with nonsyndromic orofacial clefts have increased asymmetry of fingerprint patterns[J]. PLoS One, 2020, 15(3):e0230534.
doi: 10.1371/journal.pone.0230534
[19] Altarescu G, Renbaum P, Eldar-Geva T, et al. Preventing mucopolysaccharidosis type Ⅱ (Hunter syndrome): PGD and establishing a Hunter (46, XX) stem cell line[J]. Prenat Diagn, 2011, 31(9):853-860.
doi: 10.1002/pd.2786
[20] Wang LF, Yang Y, Zhang XN, et al. Tri-allelic pattern of short tandem repeats identifies the murderer among identical twins and suggests an embryonic mutational origin[J]. Forensic Sci Int Genet, 2015, 16:239-245.
doi: 10.1016/j.fsigen.2015.01.010
[21] Abu-Halima M, Weidinger J, Poryo M, et al. Micro-RNA signatures in monozygotic twins discordant for congenital heart defects[J]. PLoS One, 2019, 14(12):e0226164.
doi: 10.1371/journal.pone.0226164
[22] Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations[J]. Nat Rev Genet, 2012, 13(5):358-369.
doi: 10.1038/nrg3198 pmid: 22510765
[23] Xiao C, Pan C, Liu EL, et al. Differences of micro-RNA expression profiles between monozygotic twins’ blood samples[J]. Forensic Sci Int Genet, 2019, 41:152-158.
doi: 10.1016/j.fsigen.2019.05.003
[24] Liang Y, Ridzon D, Wong L, et al. Characterization of microRNA expression profiles in normal human tissues[J]. BMC Genomics, 2007, 8:166.
pmid: 17565689
[25] Derks EM, Dolan CV, Boomsma DI. A test of the equal environment assumption (EEA) in multivariate twin studies[J]. Twin Res Hum Genet, 2006, 9(3):403-411.
pmid: 16790150
[26] Castillo-Fernandez JE, Spector TD, Bell JT. Epigenetics of discordant monozygotic twins: implications for disease[J]. Genome Med, 2014, 6(7):60.
doi: 10.1186/s13073-014-0060-z pmid: 25484923
[27] Deng CF, Dai L, Yi L, et al. Temporal trends in the birth rates and perinatal mortality of twins: a population-based study in China[J]. PLoS One, 2019, 14(1):e0209962.
doi: 10.1371/journal.pone.0209962
[28] Ananth CV, Chauhan SP. Epidemiology of twinning in developed countries[J]. Semin Perinatol, 2012, 36(3):156-161.
doi: 10.1053/j.semperi.2012.02.001 pmid: 22713495
[29] Mills MC, Rahal C. The GWAS Diversity Monitor tracks diversity by disease in real time[J]. Nat Genet, 2020, 52(3):242-243.
doi: 10.1038/s41588-020-0580-y
[30] Dehghan A. Genome-wide association studies[J]. Methods Mol Biol, 2018, 1793:37-49.
doi: 10.1007/978-1-4939-7868-7_4 pmid: 29876890
[31] Takahashi M, Hosomichi K, Yamaguchi T, et al. Exploration of genetic factors determining cleft side in a pair of monozygotic twins with mirror-image cleft lip and palate using whole-genome sequencing and comparison of craniofacial morphology[J]. Arch Oral Biol, 2018, 96:33-38.
doi: S0003-9969(18)30382-0 pmid: 30172943
[32] Bell JT, Saffery R. The value of twins in epigenetic epidemiology[J]. Int J Epidemiol, 2012, 41(1):140-150.
doi: 10.1093/ije/dyr179
[33] Mangiola F, Ianiro G, Franceschi F, et al. Gut microbiota in autism and mood disorders[J]. World J Gastroenterol, 2016, 22(1):361-368.
doi: 10.3748/wjg.v22.i1.361
[34] Ding HT, Taur Y, Walkup JT. Gut microbiota and autism: key concepts and findings[J]. J Autism Dev Disord, 2017, 47(2):480-489.
doi: 10.1007/s10803-016-2960-9
[35] Imamura A, Morimoto Y, Ono S, et al. Genetic and environmental factors of schizophrenia and autism spectrum disorder: insights from twin studies[J]. J Neural Transm (Vienna), 2020, 127(11):1501-1515.
[36] Li L, Huang LH, Lin SB, et al. Discordant phenotypes in monozygotic twins with 16p11.2 microdeletions including the SH2B1 gene[J]. Am J Med Genet A, 2017, 173(8):2284-2288.
doi: 10.1002/ajmg.a.38284 pmid: 28544142
[37] Gomes MS, Monterroso J, Brandão O, et al. Monochorionic twin discordance for horseshoe lung and tricuspid atresia[J]. Fetal Pediatr Pathol, 2020: 1-7.
[38] Jonsson H, Magnusdottir E, Eggertsson HP, et al. Differences between germline genomes of monozygotic twins[J]. Nat Genet, 2021, 53(1):27-34.
doi: 10.1038/s41588-020-00755-1 pmid: 33414551
[39] Vadgama N, Pittman A, Simpson M, et al. De novo single-nucleotide and copy number variation in discordant monozygotic twins reveals disease-related genes[J]. Eur J Hum Genet, 2019, 27(7):1121-1133.
doi: 10.1038/s41431-019-0376-7 pmid: 30886340
[40] Hannon E, Knox O, Sugden K, et al. Characterizing genetic and environmental influences on variable DNA methylation using monozygotic and dizygotic twins[J]. PLoS Genet, 2018, 14(8):e1007544.
doi: 10.1371/journal.pgen.1007544
[41] Castillo-Fernandez JE, Spector TD, Bell JT. Epigenetics of discordant monozygotic twins: implications for disease[J]. Genome Med, 2014, 6(7):60.
doi: 10.1186/s13073-014-0060-z pmid: 25484923
[42] Feng L, Lou J. DNA methylation analysis[J]. Methods Mol Biol, 2019, 1894:181-227.
[43] Mill J, Heijmans BT. From promises to practical strategies in epigenetic epidemiology[J]. Nat Rev Genet, 2013, 14(8):585-594.
[44] Alvizi L, Ke XY, Brito LA, et al. Differential methylation is associated with non-syndromic cleft lip and palate and contributes to penetrance effects[J]. Sci Rep, 2017, 7(1):2441.
doi: 10.1038/s41598-017-02721-0 pmid: 28550290
[45] Li WL, Christiansen L, Hjelmborg J, et al. On the power of epigenome-wide association studies using a disease-discordant twin design[J]. Bioinformatics, 2018, 34(23):4073-4078.
doi: 10.1093/bioinformatics/bty532
[46] van Dongen J, Slagboom PE, Draisma HH, et al. The continuing value of twin studies in the omics era[J]. Nat Rev Genet, 2012, 13(9):640-653.
doi: 10.1038/nrg3243 pmid: 22847273
[47] Sunny AP, Arunachal G, Danda S. Van der Woude syndrome: IRF6 mutations[J]. Indian J Pediatr, 2019, 86(11):1070-1071.
doi: 10.1007/s12098-019-03058-4 pmid: 31468312
[48] Alade AA, Buxo-Martinez CJ, Mossey PA, et al. Non-random distribution of deleterious mutations in the DNA and protein-binding domains of IRF6 are associated with Van der Woude syndrome[J]. Mol Genet Genomic Med, 2020, 8(8):e1355.
[49] Peyrard-Janvid M, Leslie EJ, Kousa YA, et al. Dominant mutations in GRHL3 cause Van der Woude syndrome and disrupt oral periderm development[J]. Am J Hum Genet, 2014, 94(1):23-32.
doi: 10.1016/j.ajhg.2013.11.009 pmid: 24360809
[50] Schwartz E, Wilkens A, Noon SE, et al. A de novo SATB2 mutation in monozygotic twins with cleft palate, dental anomalies, and developmental delay[J]. Am J Med Genet A, 2017, 173(3):809-812.
doi: 10.1002/ajmg.a.38071 pmid: 28211976
[51] Zarate YA, Kalsner L, Basinger A, et al. Genotype and phenotype in 12 additional individuals with SATB2-associated syndrome[J]. Clin Genet, 2017, 92(4):423-429.
doi: 10.1111/cge.12982 pmid: 28139846
[52] Li W, Chung CYL, Wang CC, et al. Monochorionic twins with selective fetal growth restriction: insight from placental whole-transcriptome analysis[J]. Am J Obstet Gynecol, 2020, 223(5): 749.e1-749.e16.
[53] Sukhwani M, Antolín E, Herrero B, et al. Management and perinatal outcome of selective intrauterine growth restriction in monochorionic pregnancies[J]. J Matern Fetal Neonatal Med, 2019: 1-6.
[54] Zur RL, Kingdom JC, Parks WT, et al. The placental basis of fetal growth restriction[J]. Obstet Gynecol Clin North Am, 2020, 47(1):81-98.
doi: 10.1016/j.ogc.2019.10.008
[55] Regina Altoé S, Borges ÁH, Neves ATSC, et al. Influence of parental exposure to risk factors in the occurrence of oral clefts[J]. J Dent (Shiraz), 2020, 21(2):119-126.
[56] Liu LJ, Wang LL, Ni WL, et al. Rare earth elements in umbilical cord and risk for orofacial clefts[J]. Ecotoxicol Environ Saf, 2021, 207:111284.
doi: 10.1016/j.ecoenv.2020.111284
[57] Martelli DR, Coletta RD, Oliveira EA, et al. Association between maternal smoking, gender, and cleft lip and palate[J]. Braz J Otorhinolaryngol, 2015, 81(5):514-519.
doi: 10.1016/j.bjorl.2015.07.011
[58] Grunert M, Appelt S, Grossfeld P, et al. The needle in the haystack-searching for genetic and epigenetic differences in monozygotic twins discordant for tetralogy of fallot[J]. J Cardiovasc Dev Dis, 2020, 7(4):E55.
[59] Hasan A, Afzal M. Gene and environment interplay in cognition: evidence from twin and molecular studies, future directions and suggestions for effective candidate gene x environment (cGxE) research[J]. Mult Scler Relat Disord, 2019, 33:121-130.
doi: 10.1016/j.msard.2019.05.005
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .