Int J Stomatol ›› 2021, Vol. 48 ›› Issue (5): 549-555.doi: 10.7518/gjkq.2021084

• Reviews • Previous Articles     Next Articles

Research progress on parathyroid hormone-related protein modulating mandibular condylar cartilage

Xu Lin(),Wang Ruyi,Gou Xinrui,Wang Xiaoli,Li Yu()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-02-01 Revised:2021-05-26 Online:2021-09-01 Published:2021-09-10
  • Contact: Yu Li E-mail:2018224035202@stu.scu.edu.cn;yuli@scu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31971247)

Abstract:

Mandibular condylar cartilage (MCC), different from other articular cartilages of the body, belongs to secondary fibrocartilage and is an important component of the temporomandibular joint. MCC constantly experiences reconstruction, responds to mechanical stimulation, and may degenerate with age due to the particularity of the mastication function of mandible with teeth. Parathyroid hormone-related protein (PTHrP), first discovered in malignant humoral hypercalcemia, regulates bone metabolism by paracrine or autocrine in many tissues. PTHrP plays a role in the development, remolding, and degeneration of MCC. This study reviews the research progress of PTHrP on MCC, which can provide new ideas for the research of PTHrP on the orthodontic functional treatment and repair and regeneration of the temporomandibular joint.

Key words: mandibular condylar cartilage, parathyroid hormone-related protein, cartilage remolding, mechanical stimulation

CLC Number: 

  • R34

TrendMD: 

Fig 1

Schematic diagram of mandibular condylar cartilage"

Fig 2

Illustration of mechanism of Ihh-PTHrP axis on the proliferation and hypertrophy of mandibular condylar cartilage cells"

Fig 3

Illustration of changes of PTHrP in normal TMJ and TMJ-OA"

[1] Lanske B, Karaplis AC, Lee K, et al. PTH/PTHrP receptor in early development and Indian hedgehog-re-gulated bone growth[J]. Science, 1996, 273(5275):663-666.
pmid: 8662561
[2] Kronenberg HM. PTHrP and skeletal development[J]. Ann N Y Acad Sci, 2006, 1068:1-13.
doi: 10.1196/annals.1346.002
[3] Stocum DL, Roberts WE. PartⅠ: development and physiology of the temporomandibular joint[J]. Curr Osteoporos Rep, 2018, 16(4):360-368.
doi: 10.1007/s11914-018-0447-7 pmid: 29948821
[4] Nickel JC, Iwasaki LR, Gonzalez YM, et al. Mechanobehavior and ontogenesis of the temporomandibular joint[J]. J Dent Res, 2018, 97(11):1185-1192.
doi: 10.1177/0022034518786469 pmid: 30004817
[5] Hirouchi H, Kitamura K, Yamamoto M, et al. Developmental characteristics of secondary cartilage in the mandibular condyle and sphenoid bone in mice[J]. Arch Oral Biol, 2018, 89:84-92.
doi: 10.1016/j.archoralbio.2017.12.027
[6] Tamimi D, Kocasarac HD, Mardini S. Imaging of the temporomandibular joint[J]. Semin Roentgenol, 2019, 54(3):282-301.
doi: S0037-198X(19)30017-3 pmid: 31376868
[7] Hinton RJ, Jing Y, Jing J, et al. Roles of chondrocytes in endochondral bone formation and fracture repair[J]. J Dent Res, 2017, 96(1):23-30.
doi: 10.1177/0022034516668321 pmid: 27664203
[8] Allas L, Boumédiene K, Baugé C. Epigenetic dynamic during endochondral ossification and articular cartilage development[J]. Bone, 2019, 120:523-532.
doi: 10.1016/j.bone.2018.10.004
[9] Bechtold TE, Kurio N, Nah HD, et al. The roles of Indian hedgehog signaling in TMJ formation[J]. Int J Mol Sci, 2019, 20(24):E6300.
[10] Yamazaki K, Suda N, Kuroda T. Distribution of parathyroid hormone-related protein (PTHrP) and typeⅠparathyroid hormone (PTH) PTHrP receptor in developing mouse mandibular condylar cartilage[J]. Ar-ch Oral Biol, 1999, 44(10):853-860.
[11] Chung UI, Lanske B, Lee K, et al. The parathyroid hormone/parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation[J]. Proc Natl Acad Sci U S A, 1998, 95(22):13030-13035.
pmid: 9789035
[12] Jobert AS, Zhang P, Couvineau A, et al. Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia[J]. J Clin Invest, 1998, 102(1):34-40.
pmid: 9649554
[13] Karaplis AC, Luz A, Glowacki J, et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene[J]. Genes Dev, 1994, 8(3):277-289.
doi: 10.1101/gad.8.3.277
[14] Tsutsui TW, Riminucci M, Holmbeck K, et al. Deve-lopment of craniofacial structures in transgenic mice with constitutively active PTH/PTHrP receptor[J]. Bone, 2008, 42(2):321-331.
pmid: 18063434
[15] Weir EC, Philbrick WM, Amling M, et al. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation[J]. Proc Natl Acad Sci U S A, 1996, 93(19):10240-10245.
pmid: 8816783
[16] 张杰, 戴娟, 王美青, 等. 印第安刺猬蛋白信号通路与颞下颌关节改建间的关系[J]. 国际口腔医学杂志, 2013, 40(1):47-50.
Zhang J, Dai J, Wang MQ, et al. Indian hedgehog signaling pathway and remodeling of temporoman-dibular joint[J]. Int J Stomatol, 2013, 40(1):47-50.
[17] Martin TJ. Parathyroid hormone-related protein, its regulation of cartilage and bone development, and role in treating bone diseases[J]. Physiol Rev, 2016, 96(3):831-871.
doi: 10.1152/physrev.00031.2015 pmid: 27142453
[18] Wang L, Shao YY, Ballock RT. Thyroid hormone-mediated growth and differentiation of growth plate chondrocytes involves IGF-1 modulation of beta-ca-tenin signaling[J]. J Bone Miner Res, 2010, 25(5):1138-1146.
doi: 10.1002/jbmr.5 pmid: 20200966
[19] Kurio N, Saunders C, Bechtold TE, et al. Roles of Ihh signaling in chondroprogenitor function in postnatal condylar cartilage[J]. Matrix Biol, 2018, 67:15-31.
doi: 10.1016/j.matbio.2018.02.011
[20] Singh PNP, Shea CA, Sonker SK, et al. Precise spatial restriction of BMP signaling in developing joints is perturbed upon loss of embryo movement[J]. Development, 2018, 145(5): dev153460.
[21] Chandrasekaran P, Doyran B, Li Q, et al. Biomechanical properties of murine TMJ articular disc and condyle cartilage via AFM-nanoindentation[J]. J Biomech, 2017, 60:134-141.
doi: S0021-9290(17)30331-7 pmid: 28688538
[22] Chijimatsu R, Saito T. Mechanisms of synovial joint and articular cartilage development[J]. Cell Mol Life Sci, 2019, 76(20):3939-3952.
doi: 10.1007/s00018-019-03191-5 pmid: 31201464
[23] Camirand A, Goltzman D, Gupta A, et al. The role of parathyroid hormone-related protein (PTHrP) in osteoblast response to microgravity: mechanistic implications for osteoporosis development[J]. PLoS One, 2016, 11(7):e0160034.
doi: 10.1371/journal.pone.0160034
[24] Huang LJ, Cai XY, Li H, et al. The effects of static pressure on chondrogenic and osteogenic differentiation in condylar chondrocytes from temporomandibular joint[J]. Arch Oral Biol, 2015, 60(4):622-630.
doi: 10.1016/j.archoralbio.2015.01.003
[25] Li H, Huang LJ, Xie QY, et al. Study on the effects of gradient mechanical pressures on the proliferation, apoptosis, chondrogenesis and hypertrophy of mandibular condylar chondrocytes in vitro[J]. Arch Oral Biol, 2017, 73:186-192.
doi: 10.1016/j.archoralbio.2016.10.017
[26] Jahan E, Matsumoto A, Rafiq AM, et al. Fetal jaw movement affects Ihh signaling in mandibular condylar cartilage development: the possible role of Ihh as mechanotransduction mediator[J]. Arch Oral Biol, 2014, 59(10):1108-1118.
doi: 10.1016/j.archoralbio.2014.06.009
[27] Kaul R, O’Brien MH, Dutra E, et al. The effect of altered loading on mandibular condylar cartilage[J]. PLoS One, 2016, 11(7):e0160121.
doi: 10.1371/journal.pone.0160121
[28] Li N, Hu P, Wang Y, et al. Tissue interactions are indispensable for cavity formation and disc separation in the temporomandibular joint[J]. Connect Tissue Res, 2021, 62(4):351-358.
doi: 10.1080/03008207.2019.1709452
[29] Shi Z, Lv J, Xiaoyu L, et al. Condylar degradation from decreased occlusal loading following masticatory muscle atrophy[J]. Biomed Res Int, 2018, 2018:6947612.
[30] Zhao ZH. A review of the effectiveness and long-term stability of the functional appliance[J]. Chin J Stomatol, 2018, 53(9):590-593.
doi: 10.3760/cma.j.issn.1002-0098.2018.09.004 pmid: 30196617
[31] Rabie AB, Tang GH, Xiong H, et al. PTHrP regulates chondrocyte maturation in condylar cartilage[J]. J Dent Res, 2003, 82(8):627-631.
pmid: 12885848
[32] Ng AF, Yang YO, Wong RW, et al. Factors regulating condylar cartilage growth under repeated load application[J]. Front Biosci, 2006, 11:949-954.
doi: 10.2741/1851
[33] Chen Y, Zhao BJ, Zhu Y, et al. HIF-1-VEGF-Notch mediates angiogenesis in temporomandibular joint osteoarthritis[J]. Am J Transl Res, 2019, 11(5):2969-2982.
pmid: 31217867
[34] Cui SJ, Zhang T, Fu Y, et al. DPSCs attenuate experimental progressive TMJ arthritis by inhibiting the STAT1 pathway[J]. J Dent Res, 2020, 99(4):446-455.
doi: 10.1177/0022034520901710 pmid: 31977264
[35] Long HQ, Tian PF, Guan YX, et al. Expression of Ihh signaling pathway in condylar cartilage after bite-raising in adult rats[J]. J Mol Histol, 2019, 50(5):459-470.
doi: 10.1007/s10735-019-09840-0
[36] Zhou YC, Shu B, Xie R, et al. Deletion of Axin1 in condylar chondrocytes leads to osteoarthritis-like phenotype in temporomandibular joint via activation of β-catenin and FGF signaling[J]. J Cell Physiol, 2019, 234(2):1720-1729.
doi: 10.1002/jcp.v234.2
[37] Yuan XL, Liu HQ, Li LF, et al. The roles of endoplasmic reticulum stress in the pathophysiological development of cartilage and chondrocytes[J]. Curr Pharm Des, 2017, 23(11):1693-1704.
doi: 10.2174/1381612822666161025152423
[38] Deng ZN, Liu Y, Wang CP, et al. Involvement of PI3K/Akt pathway in rat condylar chondrocytes regulated by PTHrP treatment[J]. Arch Oral Biol, 2014, 59(10):1032-1041.
doi: 10.1016/j.archoralbio.2014.04.012
[39] Roberts WE, Stocum DL. Part Ⅱ: temporomandibular joint (TMJ)-regeneration, degeneration, and adaptation[J]. Curr Osteoporos Rep, 2018, 16(4):369-379.
doi: 10.1007/s11914-018-0462-8 pmid: 29943316
[40] Yang HX, Zhang M, Liu Q, et al. Inhibition of ihh reverses temporomandibular joint osteoarthritis via a PTH1R signaling dependent mechanism[J]. Int J Mol Sci, 2019, 20(15):E3797.
[41] Sobue T, Yeh WC, Chhibber A, et al. Murine TMJ loading causes increased proliferation and chondrocyte maturation[J]. J Dent Res, 2011, 90(4):512-516.
doi: 10.1177/0022034510390810 pmid: 21248355
[42] Wang S, Deng L, Li Y, et al. Differential gene expression in the condylar cartilage of growing rabbits with temporomandibular joint anterior disk displacement-a transcriptomic study[J]. Arch Oral Biol, 2017, 74:92-100.
doi: 10.1016/j.archoralbio.2016.11.006
[43] Chen J, Gupta T, Barasz JA, et al. Analysis of microarchitectural changes in a mouse temporomandibular joint osteoarthritis model[J]. Arch Oral Biol, 2009, 54(12):1091-1098.
doi: 10.1016/j.archoralbio.2009.10.001 pmid: 19896116
[44] 郭敏, 张婧, 鹿蕾, 等. 实验性单侧前牙反𬌗修复体对大鼠髁突软骨中甲状旁腺激素相关蛋白和PTH/PTHrP受体-1表达的影响[J]. 华西口腔医学杂志, 2013,31(2):122-126.
Guo M, Zhang J, Lu L, et al. Effects of experimen-tally created unilateral anterior crossbite prosthesis on the expression of parathyroid hormone-related peptide and parathyroid hormone receptor-1 in man-dibular condylar cartilage of rat[J]. West China J Stomatol, 2013,31(2):122-126.
[45] Chen S, Fu PL, Cong RJ, et al. Strategies to minimize hypertrophy in cartilage engineering and regeneration[J]. Genes Dis, 2015, 2(1):76-95.
[46] Fischer J, Ortel M, Hagmann S, et al. Role of PTHrP(1-34) pulse frequency versus pulse duration to enhance mesenchymal stromal cell chondrogenesis[J]. J Cell Physiol, 2016, 231(12):2673-2681.
doi: 10.1002/jcp.25369
[47] Fahy N, Gardner OFW, Alini M, et al. Parathyroid hormone-related protein gradients affect the progression of mesenchymal stem cell chondrogenesis and hypertrophy[J]. Tissue Eng Part A, 2018, 24(9/10):849-859.
doi: 10.1089/ten.tea.2017.0337
[48] Fischer J, Aulmann A, Dexheimer V, et al. Intermittent PTHrP(1-34) exposure augments chondrogenesis and reduces hypertrophy of mesenchymal stromal cells[J]. Stem Cells Dev, 2014, 23(20):2513-2523.
doi: 10.1089/scd.2014.0101
[1] Qiu Jingyi, Wan Lingyun, Zhao Zhihe, Li Juan. Regulation of external and internal forces on the chondrogenic differentiation of mesenchymal stem cells [J]. Inter J Stomatol, 2016, 43(4): 449-455.
[2] Li Xin, Zhu Zhimin.. The relationship between Wnt signaling pathway and mechanotransduction in osteocytes [J]. Inter J Stomatol, 2012, 39(3): 328-331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .