Int J Stomatol ›› 2021, Vol. 48 ›› Issue (2): 243-248.doi: 10.7518/gjkq.2021022

• Reviews • Previous Articles    

Research progress on the correlation between impacted canines and palatal morphology

Liu Yi(),Liu Yi()   

  1. Dept. of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
  • Received:2020-06-16 Revised:2020-11-18 Online:2021-03-01 Published:2021-03-17
  • Contact: Yi Liu E-mail:liuyi2019st@163.com;liuyi@cmu.edu.cn
  • Supported by:
    Liaoning Province Key Research and Development Guidance Plan Project(2020JH2/10300038)

Abstract:

Impacted canines are among the most common tooth deformities observed in the clinic. Several factors can cause canine displacement inside the alveolar bone to form buccal and palatal impaction. Recent studies have found a close relationship between impacted canines and the morphology of the maxilla, including arch width, arch length, palatal morphology, palatal area, and palatal volume. Research on the morphology of the maxilla is helpful for the early diagnosis and intervention of canine impaction in clinical work and the control of the related complications. In this paper, the morphological changes of the upper arch and palate related to impacted canines are reviewed. This work provides a theoretical reference for the early diagnosis and intervention of impacted canines.

Key words: impacted canine, palatal morphology, digital

CLC Number: 

  • R783.5

TrendMD: 
[1] 傅民魁, 林久祥. 口腔正畸学[M]. 北京: 北京大学医学出版社, 2005: 189-190.
Fu MK, Lin JX. Orthodontics[M]. Beijing: Peking University Medical Press, 2005: 189-190.
[2] Allareddy V, Caplin J, Markiewicz MR, et al. Ortho-dontic and surgical considerations for treating impacted teeth[J]. Oral Maxillofac Surg Clin North Am, 2020,32(1):15-26.
doi: 10.1016/j.coms.2019.08.005 pmid: 31685344
[3] Mucedero M, Rozzi M, Milazzo A, et al. Morphometric analysis of the palatal shape and arch dimension in subjects with palatally displaced canine[J]. Eur J Orthod, 2019,41(5):460-467.
pmid: 30602006
[4] Naoumova J, Alfaro GE, Peck S. Space conditions, palatal vault height, and tooth size in patients with and without palatally displaced canines: a prospective cohort study[J]. Angle Orthod, 2018,88(6):726-732.
doi: 10.2319/120717-843.1 pmid: 30102088
[5] 张月娇, 刘奕. 上颌埋伏阻生尖牙在锥形束CT和曲面体层片中的位置分布及特征研究[J]. 中国实用口腔科杂志, 2018,11(12):726-730.
Zhang YJ, Liu Y. Position and characteristics study of maxillary impacted canines in cone-beam com- puted tomography and panoramic tomograph[J]. Chin J Pract Stomrtol, 2018,11(12):726-730.
[6] Almasoud NN. Extraction of primary canines for interceptive orthodontic treatment of palatally displaced permanent canines: a systematic review[J]. Angle Orthod, 2017,87(6):878-885.
doi: 10.2319/021417-105.1 pmid: 28800259
[7] Litsas G, Acar A. A review of early displaced maxillary canines: etiology, diagnosis and interceptive treatment[J]. Open Dent J, 2011,5:39-47.
doi: 10.2174/1874210601105010039 pmid: 21566691
[8] 安舒, 姜春苗, 詹育香. 上颌尖牙阻生的诊断和早期干预[J]. 国际口腔医学杂志, 2011,38(6):721-724.
An S, Jiang CM, Zhan YX. The study on the diagnosis and prevention of impacted maxillary canines[J]. Int J Stomatol, 2011,38(6):721-724.
[9] Ghaffar F, Sukhia RH, Fida M. Association between maxillary transverse discrepancy and occurrence of potentially impacted maxillary canines in mixed dentition patients[J]. Int Orthod, 2019,17(3):554-561.
doi: 10.1016/j.ortho.2019.06.016 pmid: 31331704
[10] 冯婧, 李志民, 王博, 等. 锥形束CT定位上颌阻生尖牙临床分析[J]. 中国实用口腔科杂志, 2018,11(2):109-112.
Feng J, Li ZM, Wang B, et al. Clinical study of the positioning of impacted maxillary canines with cone-beam computed tomography[J]. Chin J Pract Stoma-tol, 2018,11(2):109-112.
[11] Cacciatore G, Poletti L, Sforza C. Early diagnosed impacted maxillary canines and the morphology of the maxilla: a three-dimensional study[J]. Prog Orthod, 2018,19(1):20.
doi: 10.1186/s40510-018-0220-6 pmid: 30009340
[12] Hong WH, Radfar R, Chung CH. Relationship between the maxillary transverse dimension and palatally displaced canines: a cone-beam computed tomographic study[J]. Angle Orthod, 2015,85(3):440-445.
doi: 10.2319/032614-226.1 pmid: 25098187
[13] Sajnani AK, King NM. Early prediction of maxillary canine impaction from panoramic radiographs[J]. Am J Orthod Dentofacial Orthop, 2012,142(1):45-51.
doi: 10.1016/j.ajodo.2012.02.021 pmid: 22748989
[14] Rossini G, Parrini S, Castroflorio T, et al. Diagnostic accuracy and measurement sensitivity of digital models for orthodontic purposes: a systematic review[J]. Am J Orthod Dentofacial Orthop, 2016,149(2):161-170.
doi: 10.1016/j.ajodo.2015.06.029 pmid: 26827972
[15] Arboleda-Ariza N, Schilling J, Arriola-Guillén LE, et al. Maxillary transverse dimensions in subjects with and without impacted canines: a comparative cone-beam computed tomography study[J]. Am J Orthod Dentofacial Orthop, 2018,154(4):495-503.
doi: 10.1016/j.ajodo.2017.12.017 pmid: 30268260
[16] Bizzarro M, Generali C, Maietta S, et al. Association between 3D palatal morphology and upper arch dimensions in buccally displaced maxillary canines early in mixed dentition[J]. Eur J Orthod, 2018,40(6):592-596.
doi: 10.1093/ejo/cjy023 pmid: 29726936
[17] Generali C, Primozic J, Richmond S, et al. Three-dimensional evaluation of the maxillary arch and pa-late in unilateral cleft lip and palate subjects using digital dental casts[J]. Eur J Orthod, 2017,39(6):641-645.
doi: 10.1093/ejo/cjx019 pmid: 28371800
[18] 厉松, 苏茹甘. 数字化技术在口腔正畸临床中的应用[J]. 口腔疾病防治, 2019,27(2):69-73.
Li S, Su RG. Application of digital technology in orthodontic clinic[J]. J Dent Prev Treat, 2019,27(2):69-73.
[19] Aragón MLC, Pontes LF, Bichara LM, et al. Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: a systematic review[J]. Eur J Orthod, 2016,38(4):429-434.
doi: 10.1093/ejo/cjw033 pmid: 27266879
[20] 张晖榕, 尹乐锋, 刘艳丽, 等. 基于锥形术CT数字化建模的3D打印牙颌模型制作及精确度研究[J]. 华西口腔医学杂志, 2018,36(2):156-161.
Zhang HR, Yin LF, Liu YL, et al. Fabrication and accuracy research on 3D printing dental model based on cone beam computed tomography digital modeling[J]. West China J Stomatol, 2018,36(2):156-161.
[21] Laganà G, Di Fazio V, Paoloni V, et al. Geometric morphometric analysis of the palatal morphology in growing subjects with skeletal open bite[J]. Eur J Orthod, 2019,41(3):258-263.
doi: 10.1093/ejo/cjy055 pmid: 30102344
[22] Papagiannis A, Halazonetis DJ. Shape variation and covariation of upper and lower dental arches of an orthodontic population[J]. Eur J Orthod, 2016,38(2):202-211.
doi: 10.1093/ejo/cjv019 pmid: 25840587
[23] Pavoni C, Paoloni V, Ghislanzoni LTH, et al. Geometric morphometric analysis of the palatal morphology in children with impacted incisors: a three-dimensional evaluation[J]. Angle Orthod, 2017,87(3):404-408.
doi: 10.2319/071716-557.1 pmid: 27762606
[24] Shahen S, Carrino G, Carrino R, et al. Palatal volu-me and area assessment on digital casts generated from cone-beam computed tomography scans[J]. Angle Orthod, 2018,88(4):397-402.
doi: 10.2319/091117-611.1 pmid: 29561657
[25] de Luca Canto G, Pachêco-Pereira C, Lagravere MO, et al. Intra-arch dimensional measurement validity of laser-scanned digital dental models compared with the original plaster models: a systematic review[J]. Orthod Craniofac Res, 2015,18(2):65-76.
doi: 10.1111/ocr.12068 pmid: 25677755
[26] McConnell TL, Hoffman DL, Forbes DP, et al. Ma-xillary canine impaction in patients with transverse maxillary deficiency[J]. ASDC J Dent Child, 1996,63(3):190-195.
pmid: 8853823
[27] Schindel RH, Duffy SL. Maxillary transverse discrepancies and potentially impacted maxillary canines in mixed-dentition patients[J]. Angle Orthod, 2007,77(3):430-435.
doi: 10.2319/0003-3219(2007)077[0430:MTDAPI]2.0.CO;2 pmid: 17465649
[28] Miresmaeili A, Shokri A, Salemi F, et al. Morphology of maxilla in patients with palatally displaced canines[J]. Int Orthod, 2019,17(1):130-135.
doi: 10.1016/j.ortho.2019.01.012 pmid: 30772355
[29] Langberg BJ, Peck S. Adequacy of maxillary dental arch width in patients with palatally displaced canines[J]. Am J Orthod Dentofacial Orthop, 2000,118(2):220-223.
doi: 10.1067/mod.2000.104819 pmid: 10935964
[30] Al-Nimri K, Gharaibeh T. Space conditions and dental and occlusal features in patients with palatally impacted maxillary canines: an aetiological study[J]. Eur J Orthod, 2005,27(5):461-465.
doi: 10.1093/ejo/cji022 pmid: 15961570
[31] Leonardi R, Muraglie S, Crimi S, et al. Morphology of palatally displaced canines and adjacent teeth, a 3-D evaluation from cone-beam computed tomographic images[J]. BMC Oral Health, 2018,18(1):156.
doi: 10.1186/s12903-018-0617-0 pmid: 30180892
[32] Sajnani AK. Permanent maxillary canines—review of eruption pattern and local etiological factors lea-ding to impaction[J]. J Investig Clin Dent, 2015,6(1):1-7.
doi: 10.1111/jicd.12067 pmid: 24357555
[33] Yan B, Sun ZY, Fields H, et al. Etiologic factors for buccal and palatal maxillary canine impaction: a perspective based on cone-beam computed tomography analyses[J]. Am J Orthod Dentofacial Orthop, 2013,143(4):527-534.
doi: 10.1016/j.ajodo.2012.11.021 pmid: 23561415
[34] Anic-Milosevic S, Varga S, Mestrovic S, et al. Dental and occlusal features in patients with palatally displaced maxillary canines[J]. Eur J Orthod, 2009,31(4):367-373.
doi: 10.1093/ejo/cjp014 pmid: 19401354
[35] Saiar M, Rebellato J, Sheats RD. Palatal displacement of canines and maxillary skeletal width[J]. Am J Orthod Dentofacial Orthop, 2006,129(4):511-519.
doi: 10.1016/j.ajodo.2005.03.021 pmid: 16627177
[36] Jacoby H. The etiology of maxillary canine impactions[J]. Am J Orthod, 1983,84(2):125-132.
doi: 10.1016/0002-9416(83)90176-8 pmid: 6576636
[37] Baccetti T, Sigler LM, McNamara JA. An RCT on treatment of palatally displaced canines with RME and/or a transpalatal arch[J]. Eur J Orthod, 2011,33(6):601-607.
doi: 10.1093/ejo/cjq139 pmid: 21059877
[38] Kim Y, Hyun HK, Jang KT. Interrelationship between the position of impacted maxillary canines and the morphology of the maxilla[J]. Am J Orthod Dentofacial Orthop, 2012,141(5):556-562.
doi: 10.1016/j.ajodo.2011.11.015 pmid: 22554749
[39] Thilander B. Dentoalveolar development in subjects with normal occlusion. A longitudinal study between the ages of 5 and 31 years[J]. Eur J Orthod, 2009,31(2):109-120.
pmid: 19304760
[40] Primozic J, Richmond S, Kau CH, et al. Three-dimensional evaluation of early crossbite correction: a longitudinal study[J]. Eur J Orthod, 2013,35(1):7-13.
doi: 10.1093/ejo/cjq198
[1] Tang Zhiwei,Gao Ying. Application and progress on targeted endodontic microsurgery techniques [J]. Int J Stomatol, 2022, 49(6): 678-683.
[2] Cai Pingping,Zhuo Yingying,Lin Jie,Zheng Zhi-qiang.. Application of computer-aided technology in fiber post removal [J]. Int J Stomatol, 2022, 49(6): 731-736.
[3] Luo Qiyue,Liu Yeyu,Luo Yilin,Man Yi.. Centric relation centered, facial esthetically and prosthetically driven digital workflow for edentulism implant rehabilitation: a clinical report [J]. Int J Stomatol, 2022, 49(4): 426-431.
[4] Pang Yu,Liu Xian,Wang Liao. Application of digital template in the extraction of embedded supernumerary tooth [J]. Int J Stomatol, 2022, 49(4): 448-452.
[5] Zhao Zhe,Wang Fu,Zheng Xiuli,An Na,Chen Jihua.. Research progress on measuring methods of tooth movement under functional load [J]. Int J Stomatol, 2022, 49(3): 362-366.
[6] Luo En. Exploration and clinical application of artificial intelligence in orthognathic surgery [J]. Int J Stomatol, 2022, 49(2): 125-131.
[7] Li Ruyi,Luo Feng,Wan Qianbing. Principle and application progress of real-time mandibular motion recording system [J]. Int J Stomatol, 2022, 49(2): 182-189.
[8] Tian Haonan,Lin Min,Xie Congman,Ren Aishu. Association between ponticulus posticus and maxillary palatally impacted canine: a cone-beam computed tomography study [J]. Int J Stomatol, 2021, 48(5): 536-540.
[9] Niu Ye,Zeng Yunting,Zeng Yuexiang,Zhang Zeyu,Xiao Liwei. Application of digital technology in indirect bonding of straight wire brackets [J]. Int J Stomatol, 2021, 48(4): 491-496.
[10] Zhao Zhihe. Comparison of anterior tooth torque design in digital orthodontics [J]. Int J Stomatol, 2021, 48(1): 1-6.
[11] Wang Ben,Xu Zhezhen,Wei Xi. Application and progress of a digitalized minimally invasive technique in endodontics [J]. Int J Stomatol, 2021, 48(1): 110-118.
[12] Cai Xiaoxiao. Digital planning strategies in aesthetic areas [J]. Int J Stomatol, 2019, 46(6): 621-630.
[13] Xue Du,Fang Qu,Weicai Liu. Establishment of a three-dimensional virtual dental patient and its application in esthetic restoration [J]. Inter J Stomatol, 2018, 45(6): 695-702.
[14] Qin Wu,Yimin Zhao. Current research and application situation of robot in stomatology [J]. Inter J Stomatol, 2018, 45(5): 615-620.
[15] Lü Jing, Ling Junqi. Research progress on the digital template for root canal location [J]. Inter J Stomatol, 2018, 45(2): 233-238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .