Int J Stomatol ›› 2020, Vol. 47 ›› Issue (5): 538-546.doi: 10.7518/gjkq.2020086

• Original Articles • Previous Articles     Next Articles

Preliminary study on osteoprotegerin/receptor activator of nuclear factor-κB ligand expression in mandible and femur on site selectivity of bone metastasis of lung cancer cells

Fu Shijin(),Zeng Kan,Li Xin,Yang Jing,Wang Chenglin,Ye Ling()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-01-10 Revised:2020-05-11 Online:2020-09-01 Published:2020-09-16
  • Contact: Ling Ye E-mail:1744573650@qq.com;yeling@scu.edu.cn
  • Supported by:
    National Natural Science Foundation of China for Distinguished Young Scholars(81825005)

Abstract:

Objective To explore the involvement of osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL) ratio in mandible and femur on the site selectivity of bone metastasis of lung cancer cells. Methods Mouse Lewis lung cancer cells were used to construct mouse models of systemic/local lung cancer bone metastasis. Hematoxylin-eosin staining and micro-computed tomography (MicroCT) analysis were used to determine the selectivity of tumor metastasis amongst different bone tissues. Immunohistochemical staining of cathepsin K (CTSK) was performed to detect osteoclast activation in bone tissues. RNA sequencing (RNA-seq) and real time-quantitative polymerase chain reaction (RT-qPCR) were conducted to measure OPG mRNA/RANKL mRNA in bone.Results Using the mouse model of systemic lung-cancer cell bone metastasis, we established that the bone metastasis was less likely to occur in the mandible than the femur. Under physiological conditions, taking the mandible and femur as representative bone tissues with low/high incidence of lung cancer-cell metastasis, we found that the mandible exhibited a significantly fewer osteoclast number and higher OPG mRNA/RANKL mRNA ratio than the femur (P<0.01). Further investigations suggested that lung cancer cell-induced bone destruction mainly distributed in areas concentrated with CTSK-positive osteoclasts, with a significantly greater osteoclast number (P<0.01) and lower OPG mRNA/RANKL mRNA ratio in the metastasized bone tissue compared with the non-metastasized bone tissue (P<0.000 1). Conclusion Differences in osteoclast activation and OPG mRNA/RANKL mRNA ratio levels exist in bone tissues with low/high incidence of lung cancer-cell bone metastasis, suggesting that OPG/RANKL may affect osteoclast activation, and is therefore involved in the site selectivity of lung cancer-cell bone metastasis.

Key words: lung cancer cells bone metastasis, mandible, femur, osteoclast, osteoprotegerin, receptor activator of nuclear factor-κB ligand

CLC Number: 

  • Q257

TrendMD: 

Fig 1

Lung metastasis in mice by injection of LLC cells through tail vein"

Fig 2

Tumor colonization and bone destruction occurred in mandible and femur in mouse model of systemic lung cancer cells bone metastasis"

Fig 3

Analysis of cathepsin K-positive osteoclasts in normal physiological mandible and femur"

Fig 4

Analysis of OPG mRNA/RANKL mRNA ratios in normal physiological mandible and femur"

Fig 5

Osteoclasts activation and OPG mRNA/RANKL mRNA ratios in bone tissues of the experimental and conrtrol groups"

[1] Meyer I, Shklar G. Malignant tumors metastatic to mouth and jaws[J]. Oral Surg Oral Med Oral Pathol, 1965,20:350-362.
pmid: 14342927
[2] Sánchez Aniceto G, García Peñín A, de la Mata Pages R, et al. Tumors metastatic to the mandible: analysis of nine cases and review of the literature[J]. J Oral Maxillofac Surg, 1990,48(3):246-251.
doi: 10.1016/0278-2391(90)90388-i pmid: 2406399
[3] Hernandez RK, Wade SW, Reich A, et al. Incidence of bone metastases in patients with solid tumors: analysis of oncology electronic medical records in the United States[J]. BMC Cancer, 2018,18(1):44.
doi: 10.1186/s12885-017-3922-0 pmid: 29306325
[4] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424.
doi: 10.3322/caac.21492 pmid: 30207593
[5] Tsuya A, Kurata T, Tamura K, et al. Skeletal metas-tases in non-small cell lung cancer: a retrospective study[J]. Lung Cancer, 2007,57(2):229-232.
doi: 10.1016/j.lungcan.2007.03.013 pmid: 17451841
[6] 北京医学奖励基金会肺癌青年专家委员会, 中国胸外科肺癌联盟. 肺癌骨转移诊疗专家共识(2019版)[J]. 中国肺癌杂志, 2019,22(4):187-207.
Youth Specialists Committee of Lung Cancer, Beijing Medical AwardFoundaton, Chinese Lung Cancer Union. Expert consensus on the diagnosis and treat-ment of bone metastasis in lung cancer (2019 version)[J]. Chin J Lung Cancer, 2019,22(4):187-207.
[7] Clain A. Secondary malignant disease of bone[J]. Br J Cancer, 1965,19(1):15-29.
doi: 10.1038/bjc.1965.3
[8] Ueki Y, Tiziani V, Santanna C, et al. Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism[J]. Nat Genet, 2001,28(2):125-126.
doi: 10.1038/88832 pmid: 11381256
[9] Simonds WF, James-Newton LA, Agarwal SK, et al. Familial isolated hyperparathyroidism: clinical and genetic characteristics of 36 kindreds[J]. Medicine (Baltimore), 2002,81(1):1-26.
doi: 10.1097/00005792-200201000-00001
[10] Ruggiero SL, Mehrotra B, Rosenberg TJ, et al. Osteo-necrosis of the jaws associated with the use of bis-phosphonates: a review of 63 cases[J]. J Oral Maxil-lofac Surg, 2004,62(5):527-534.
[11] Yoneda T, Hiraga T. Crosstalk between cancer cells and bone microenvironment in bone metastasis[J]. Biochem Biophys Res Commun, 2005,328(3):679-687.
doi: 10.1016/j.bbrc.2004.11.070 pmid: 15694401
[12] Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypojournal revisited[J]. Nat Rev Cancer, 2003,3(6):453-458.
doi: 10.1038/nrc1098 pmid: 12778135
[13] Paget S. The distribution of secondary growths in cancer of the breast. 1889[J]. Cancer Metastasis Rev, 1989,8(2):98-101.
pmid: 2673568
[14] Zhuang XQ, Zhang H, Li XY, et al. Differential ef-fects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1[J]. Nat Cell Biol, 2017,19(10):1274-1285.
doi: 10.1038/ncb3613 pmid: 28892080
[15] Wang H, Yu CJ, Gao X, et al. The osteogenic niche promotes early-stage bone colonization of disse-minated breast cancer cells[J]. Cancer Cell, 2015,27(2):193-210.
doi: 10.1016/j.ccell.2014.11.017 pmid: 25600338
[16] Martin TJ, Sims NA. RANKL/OPG; Critical role in bone physiology[J]. Rev Endocr Metab Disord, 2015,16(2):131-139.
doi: 10.1007/s11154-014-9308-6 pmid: 25557611
[17] Dougall WC. Molecular pathways: osteoclast-depen-dent and osteoclast-independent roles of the RANKL/ RANK/OPG pathway in tumorigenesis and metastasis[J]. Clin Cancer Res, 2012,18(2):326-335.
pmid: 22031096
[18] Wu JB, Yin LJ, Shi CH, et al. MAOA-dependent activation of shh-IL6-RANKL signaling network promotes prostate cancer metastasis by engaging tumor-stromal cell interactions[J]. Cancer Cell, 2017,31(3):368-382.
pmid: 28292438
[19] Dougall WC, Chaisson M. The RANK/RANKL/OPG triad in cancer-induced bone diseases[J]. Cancer Me-tastasis Rev, 2006,25(4):541-549.
[20] Grimaud E, Soubigou L, Couillaud S, et al. Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis[J]. Am J Pathol, 2003,163(5):2021-2031.
pmid: 14578201
[21] 羊惠君. 实地解剖学[M]. 北京: 人民卫生出版社, 2011.
Yang HJ. Practical anatomy teaching[M]. Beijing: People’s Medical Publishing House, 2011.
[22] 邹仲之. 组织学与胚胎学[M]. 北京: 人民卫生出版社, 2013.
Zou ZZ. Histology and embryology[M]. Beijing: People’s Medical Publishing House, 2013.
[23] Irizarry AR, Yan GR, Zeng QQ, et al. Defective enamel and bone development in sodium-dependent citrate transporter (NaCT) Slc13a5 deficient mice[J]. PLoS One, 2017,12(4):e0175465.
pmid: 28406943
[24] Jiang XB, Iseki S, Maxson RE, et al. Tissue origins and interactions in the mammalian skull vault[J]. Dev Biol, 2002,241(1):106-116.
pmid: 11784098
[25] Hirshberg A, Berger R, Allon I, et al. Metastatic tumors to the jaws and mouth[J]. Head Neck Pathol, 2014,8(4):463-474.
doi: 10.1007/s12105-014-0591-z pmid: 25409855
[1] Yu Yuelin,Kong Weidong. Research progress on the association between primary failure of tooth eruption and parathyroid hormone receptor 1 gene [J]. Int J Stomatol, 2023, 50(5): 573-580.
[2] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[3] Yin Yijia,Yang Jinting,Shen Jianqi,Huang Lingyi,Jing Yan,Guan Qiuyue,Han Xianglong. Endothelial-cell-specific overexpression of Dickkopf 1 using Cadherin 5 promoter regulates osteogenesis in vivo [J]. Int J Stomatol, 2022, 49(6): 641-647.
[4] An Ning,Li Jiao,Mei Zhidan. Research progress on the osteoprotegerin/receptor activator of nuclear factor-κB/receptor activator of nuclear factor-κB ligand signaling pathway of tooth eruption [J]. Int J Stomatol, 2022, 49(1): 116-120.
[5] He Zonghan,Meng Juanhong. Research progress on masticatory muscle tendon-aponeurosis hyperplasia [J]. Int J Stomatol, 2021, 48(2): 225-229.
[6] Lü Hui,Wang Hua,Sun Wen. T helper cell 17 and periodontitis related osteoimmunology [J]. Int J Stomatol, 2020, 47(6): 661-668.
[7] Sun Jianwei,Lei Lihong,Tan Jingyi,Chen Lili. Regulation of osteoimmunology by MicroRNA 155 and research progress of its possible mechanism in periodontitis [J]. Int J Stomatol, 2020, 47(5): 607-615.
[8] Yang Peipei,Yang Yuchen,Zhang Qiang. Advances in the mechanism and effect of nicotine on alveolar osteoclasts [J]. Int J Stomatol, 2020, 47(5): 616-620.
[9] Zhu Junjin,Zhou Jiaqi,Wu Yingying. Function of autophagy induced by mammalian target of rapamycin complex 1 in bone metabolism [J]. Int J Stomatol, 2020, 47(1): 84-89.
[10] Lu Kexin,Zhang Diya,Wu Yanmin. Research progress of protease-activated receptors on different types of cells in periodontal tissue [J]. Int J Stomatol, 2019, 46(6): 657-662.
[11] Lin Yangyang,Hou Min. Effect of bilateral sagittal split ramus osteotomy operation on the displacement of proximal segment of mandible [J]. Int J Stomatol, 2019, 46(6): 718-723.
[12] Zhang Yuhong,Qi Mengchun,Dong Wei,Sun Hong. Effect of CaMKⅡδ gene silencing on osteoclast differentiation and c-fos/c-jun/CREB gene [J]. Int J Stomatol, 2019, 46(4): 420-425.
[13] Xiaomeng Wang,Xiao Wang,Ce Shi,Hongchen Sun,Yang Huang. Effects of bone morphogenetic protein signalling pathway and its crosstalks on mandible development [J]. Int J Stomatol, 2019, 46(3): 258-262.
[14] Wei Hu,Yifan Wang,Yifang Yuan,Ying Li,Bin Guo. Research progress on regulatory mechanism of the circadian clock genes on osteogenesis and bone resorption [J]. Int J Stomatol, 2019, 46(3): 302-307.
[15] Xin Gao,Rongsheng Zeng. Research progress on osteoprotegerin in oral science [J]. Int J Stomatol, 2019, 46(3): 316-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .