Int J Stomatol ›› 2020, Vol. 47 ›› Issue (2): 196-201.doi: 10.7518/gjkq.2020046

• Reviews • Previous Articles     Next Articles

Effects of different registration methods on the accuracy of navigation registration in dental implants

Tian Tian,Zhang Zhihong(),Liu Honghong   

  1. Stomatological Center of Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
  • Received:2019-05-23 Revised:2019-07-29 Online:2020-03-01 Published:2020-03-12
  • Contact: Zhihong Zhang E-mail:zzhzqr@126.com
  • Supported by:
    This study was supported by “New Medicine of University of Science and Technology” Joint Foundation of 2018(WK9110000006)

Abstract:

The dynamic navigation system (DNS) is an auxiliary system for dental implant surgery that utilizes precise infrared positioning technology through the visualized operation of 3D digital images. The system is aimed at realizing the precise fusion of 3D images and actual anatomical positions and achieving the real-time tracking of surgical instruments. The DNS is suitable for preoperative planning and precise intraoperative guidance for dental implant surgery. The key factor that affects the accuracy of the DNS is the accurate registration of the actual anatomical structure of the operation area and its virtual 3D digital image. The indications, registration characteristics, and registration accuracies with different registration methods vary. The present work introduces the registration methods used in clinical practice, including bone marker registration, occlusal splint registration, U-tube registration, facial frame registration, anatomical mark registration, and unmarked registration. The factors affecting registration errors are also summarized to enable clinicians to effectively understand the characteristics and indications of different registration methods, reduce registration errors, and achieve accurate implantation.

Key words: dynamic navigation system, registration methods, accuracy

CLC Number: 

  • R783

TrendMD: 
[1] Sahota J, Bhatia A, Gupta M , et al. Reliability of or- thopantomography and cone-beam computed tomo-graphy in presurgical implant planning: a clinical study[J]. J Contemp Dent Pract, 2017,18(8):665-669.
[2] Alawaji Y, MacDonald DS, Giannelis G , et al. Opti-mization of cone beam computed tomography image quality in implant dentistry[J]. Clin Exp Dent Res, 2018,4(6):268-278.
[3] Abdel-Wahed NA, Bahammam MA . Cone beam CT- based preoperative volumetric estimation of bone graft required for lateral window sinus augmentation, compared with intraoperative findings: a pilot study[J]. Open Dent J, 2018,12:820-826.
[4] Albiero AM, Benato R, Momic S , et al. Implementa-tion of computer-guided implant planning using di-gital scanning technology for restorations supported by conical abutments: a dental technique[J]. J Pros-thet Dent, 2018,119(5):720-726.
[5] Cristache CM, Gurbanescu S . Accuracy evaluation of a stereolithographic surgical template for dental implant insertion using 3D superimposition protocol[J]. Int J Dent, 2017: 4292081.
[6] Brandt J, Brenner M, Lauer HC , et al. Accuracy of a template-guided implant surgery system with a CAD/CAM-based measurement method: an in vitro study[J]. Int J Oral Maxillofac Implants, 2018,33(2):328-334.
[7] Stefanelli LV, DeGroot BS, Lipton DI , et al. Accuracy of a dynamic dental implant navigation system in a private practice[J]. Int J Oral Maxillofac Implants, 2019,34(1):205-213.
[8] Chen ZZ, Li JY, Sinjab K , et al. Accuracy of flapless immediate implant placement in anterior maxilla using computer-assisted versus freehand surgery: a cadaver study[J]. Clin Oral Implants Res, 2018,29(12):1186-1194.
[9] Chen CK, Yuh DY, Huang RY , et al. Accuracy of implant placement with a navigation system, a la-boratory guide, and freehand drilling[J]. Int J Oral Maxillofac Implants, 2018,33(6):1213-1218.
[10] Hung K, Huang W, Wang F , et al. Real-time surgical navigation system for the placement of zygomatic implants with severe bone deficiency[J]. Int J Oral Maxillofac Implants, 2016,31(6):1444-1449.
[11] Eggers G, Mühling J, Marmulla R . Image-to-patient registration techniques in head surgery[J]. Int J Oral Maxillofac Surg, 2006,35(12):1081-1095.
[12] Luebbers HT, Messmer P, Obwegeser JA , et al. Comparison of different registration methods for surgical navigation in cranio-maxillofacial surgery[J]. J Craniomaxillofac Surg, 2008,36(2):109-116.
[13] Hung KF, Wang F, Wang HW , et al. Accuracy of a real-time surgical navigation system for the place-ment of quad zygomatic implants in the severe atro-phic maxilla: a pilot clinical study[J]. Clin Implant Dent Relat Res, 2017,19(3):458-465.
[14] Wang F, Bornstein MM, Hung K , et al. Application of real-time surgical navigation for zygomatic im-plant insertion in patients with severely atrophic maxilla[J]. J Oral Maxillofac Surg, 2018,76(1):80-87.
[15] Fan S, Hung K, Bornstein MM , et al. The effect of the configurations of fiducial mark[J]. Int J Oral Maxillofac Implants, 2019,34(1):85-90.
[16] Watzinger F, Birkfellner W, Wanschitz F , et al. Place-ment of endosteal implants in the zygoma after ma-xillectomy: a Cadaver study using surgical navigation[J]. Plast Reconstr Surg, 2001,107(3):659-667.
[17] Xiaojun C, Ming Y, Yanping L , et al. Image guided oral implantology and its application in the place-ment of zygoma implants[J]. Comput Methods Pro-grams Biomed, 2009,93(2):162-173.
[18] Widmann G, Zangerl A, Schullian P , et al. Do image modality and registration method influence the ac-curacy of craniofacial navigation[J]. J Oral Maxil-lofac Surg, 2012,70(9):2165-2173.
[19] Eggers G, Mühling J . Template-based registration for image-guided skull base surgery[J]. Otolaryngol Head Neck Surg, 2007,136(6):907-913.
[20] Venosta D, Sun Y, Matthews F , et al. Evaluation of two dental registration-splint techniques for surgical navigation in cranio-maxillofacial surgery[J]. J Craniomaxillofac Surg, 2014,42(5):448-453.
[21] Emery RW, Merritt SA, Lank K , et al. Accuracy of dynamic navigation for dental implant placement-model-based evaluation[J]. J Oral Implantol, 2016,42(5):399-405.
[22] Block MS, Emery RW, Lank K , et al. Implant place-ment accuracy using dynamic navigation[J]. Int J Oral Maxillofac Implants, 2017,32(1):92-99.
[23] Block MS, Emery RW, Cullum DR , et al. Implant placement is more accurate using dynamic navi-gation[J]. J Oral Maxillofac Surg, 2017,75(7):1377-1386.
[24] Jorba-García A, Figueiredo R, González-Barnadas A , et al. Accuracy and the role of experience in dynamic computer guided dental implant surgery: an in-vitro study[J]. Med Oral Patol Oral Cir Bucal, 2019,24(1):e76-e83.
[25] Widmann G, Stoffner R, Schullian P , et al. Com-parison of the accuracy of invasive and noninvasive registration methods for image-guided oral implant surgery[J]. Int J Oral Maxillofac Implants, 2010,25(3):491-498.
[26] Sun Y, Luebbers HT, Agbaje JO , et al. Validation of anatomical landmarks-based registration for image-guided surgery: an in-vitro study[J]. J Craniomaxil-lofac Surg, 2013,41(6):522-526.
[27] Clements LW, Collins JA, Weis JA , et al. Evaluation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ul-trasound[J]. J Med Imaging (Bellingham), 2016,3(1):015003.
[28] Troitzsch D, Hoffmann J, Dammann F , et al. Re-gistration using three-dimensional Laser surface scanning for navigation in oral and craniomaxillofacial surgery[J]. Zentralbl Chir, 2003,128(7):551-556.
[29] Hoffmann J, Westendorff C, Leitner C , et al. Vali-dation of 3D-Laser surface registration for image-guided cranio-maxillofacial surgery[J]. J Cranio-maxillofac Surg, 2005,33(1):13-18.
[30] Raabe A, Krishnan R, Wolff R , et al. Laser surface scanning for patient registration in intracranial image-guided surgery[J]. Neurosurgery, 2002, 50(4): 797-801, 802-803.
[31] Schlaier J, Warnat J, Brawanski A . Registration accuracy and practicability of laser-directed surface matching[J]. Comput Aided Surg, 2002,7(5):284-290.
[32] Lübbers HT, Matthews F, Zemann W , et al. Registra-tion for computer-navigated surgery in edentulous patients: a problem-based decision concept[J]. J Craniomaxillofac Surg, 2011,39(6):453-458.
[33] Ohba S, Yoshimura H, Ishimaru K , et al. Application of a real-time three-dimensional navigation system to various oral and maxillofacial surgical procedures[J]. Odontology, 2015,103(3):360-366.
[34] Fan YF, Xu XF, Wang MN . A surface-based spatial registration method based on sense three-dimensional scanner[J]. J Craniofac Surg, 2017,28(1):157-160.
[35] Marmulla R, Lüth T, Mühling J , et al. Automated laser registration in image-guided surgery: evaluation of the correlation between laser scan resolution and navigation accuracy[J]. Int J Oral Maxillofac Surg, 2004,33(7):642-648.
[36] Jakubovic R, Guha D, Gupta S , et al. High speed, high density intraoperative 3D optical topographical imaging with efficient registration to MRI and CT for craniospinal surgical navigation[J]. Sci Rep, 2018,8(1):14894.
[37] Wang MY, Maurer CR Jr, Fitzpatrick JM , et al. An automatic technique for finding and localizing ex-ternally attached markers in CT and MR volume images of the head[J]. IEEE Trans Biomed Eng, 1996,43(6):627-637.
[38] Woerdeman PA, Willems PW, Noordmans HJ , et al. The effect of repetitive manual fiducial localization on target localization in image space[J]. Neurosurgery, 2007, 60(2 Suppl 1): ONS100-ONS103; discussion ONS103-ONS104.
[39] Qin CX, Cao ZG, Fan SC , et al. An oral and maxillo-facial navigation system for implant placement with automatic identification of fiducial points[J]. Int J Comput Assist Radiol Surg, 2019,14(2):281-289.
[40] Du Y, Wangrao, Liu L , et al. Quantification of image artifacts from navigation markers in dynamic guided implant surgery and the effect on registration per-formance in different clinical scenarios[J]. Int J Oral Maxillofac Implants, 2019,34(3):726-736.
[41] Kim S, Kazanzides P . Fiducial-based registration with a touchable region model[J]. Int J Comput Assist Radiol Surg, 2017,12(2):277-289.
[42] Suenaga H, Hoang Tran H, Liao H , et al. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study[J]. Int J Oral Sci, 2013,5(2):98-102.
[43] Ma LF, Jiang WP, Zhang BY , et al. Augmented rea-lity surgical navigation with accurate CBCT-patient registration for dental implant placement[J]. Med Biol Eng Comput, 2019,57(1):47-57.
[44] Jiang WP, Ma LF, Zhang BY , et al. Evaluation of the 3D augmented reality-guided intraoperative posi-tioning of dental implants in edentulous mandibular models[J]. Int J Oral Maxillofac Implants, 2018,33(6):1219-1228.
[1] Gong Jiaming,Zhao Ruimin,Pan Hongwei,Lang Xin,Yu Zhanhai,Li Jianxue. Meta-analysis of dynamic navigation versus static navigation in the accuracy of implant surgery [J]. Int J Stomatol, 2023, 50(5): 538-551.
[2] Cai Pingping,Zhuo Yingying,Lin Jie,Zheng Zhi-qiang.. Application of computer-aided technology in fiber post removal [J]. Int J Stomatol, 2022, 49(6): 731-736.
[3] Wang Ben,Xu Zhezhen,Wei Xi. Application and progress of a digitalized minimally invasive technique in endodontics [J]. Int J Stomatol, 2021, 48(1): 110-118.
[4] Tingting Zhang,Jian Hu. Research progress on the application of surgical template and dynamic navigation system in implant dentistry [J]. Inter J Stomatol, 2019, 46(1): 99-104.
[5] Deng Mengzhao, Pan Xiaogang.. Application of cone beam computed tomography in dento-maxilla facial measurement [J]. Inter J Stomatol, 2013, 40(4): 480-482.
[6] Xu Ziqing, Feng Jing.. Accuracy and reliability of cone-beam computed tomography in oral maxillofacial linear measurements [J]. Inter J Stomatol, 2012, 39(4): 557-560.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .