Int J Stomatol ›› 2020, Vol. 47 ›› Issue (3): 257-262.doi: 10.7518/gjkq.2020045

• Mesenchymal Stem Cell • Previous Articles     Next Articles

Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells

Yang Yeqing1,2,Chen Ming1,2,Wu Buling1,2()   

  1. 1.Dept. of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
    2.School of Stomatology, Southern Medical University, Guangzhou 510515, China
  • Received:2019-05-25 Revised:2019-10-12 Online:2020-05-01 Published:2020-05-08
  • Contact: Buling Wu E-mail:bulingwu@smu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(81870755);National Natural Science Foundation of China(81600882)

Abstract:

Mesenchymal stem cells (MSCs) are adult stem cells with self-renewal and multi-directional differentiation proficiency. The increasing number of studies on MSCs has allowed people to further understand their biological characteristics, differentiation ability and clinical application. Circular RNA (circRNA) is a kind of universal and diverse endogenous non-coding RNA, which is widely found in eukaryotic cells. The circular structure is covalently closed, continuous and stable. circRNA has many functions, such as microRNA sponges and regulators of alternative splicing and gene expression. Studies have shown that circRNA is a vital regulated target that plays an important role in the osteogenic differentiation of MSCs to maintain the characteristics of differentiation. This article reviews the current research on the effects of circRNA on the osteogenic differentiation of MSCs.

Key words: mesenchymal stem cell, osteogenic differentiation, circular RNA

CLC Number: 

  • Q254

TrendMD: 
[1] Qu S, Yang X, Li X , et al. Circular RNA: a new star of noncoding RNAs[J]. Cancer Lett, 2015,365(2):141-148.
doi: 10.1016/j.canlet.2015.06.003 pmid: 26052092
[2] Jeck WR, Sorrentino JA, Wang K , et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013,19(2):141-157.
doi: 10.1261/rna.035667.112 pmid: 23249747
[3] Salzman J, Chen RE, Olsen MN , et al. Cell-type specific features of circular RNA expression[J]. PLoS Genet, 2013,9(9):e1003777.
doi: 10.1371/journal.pgen.1003777 pmid: 24039610
[4] Li J, Yang J, Zhou P , et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications[J]. Am J Cancer Res, 2015,5(2):472-480.
pmid: 25973291
[5] Wang F, Nazarali AJ, Ji S . Circular RNAs as poten-tial biomarkers for cancer diagnosis and therapy[J]. Am J Cancer Res, 2016,6(6):1167-1176.
pmid: 27429839
[6] Burd CE, Jeck WR, Liu Y , et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk[J]. PLoS Genet, 2010,6(12):e1001233.
doi: 10.1371/journal.pgen.1001233 pmid: 21151960
[7] Ghosal S, Das S, Sen R , et al. Circ2Traits: a compre-hensive database for circular RNA potentially asso-ciated with disease and traits[J]. Front Genet, 2013,4:283.
[8] Lukiw WJ . Circular RNA (circRNA) in Alzheimer’s disease (AD)[J]. Front Genet, 2013,4:307.
doi: 10.3389/fgene.2013.00307 pmid: 24427167
[9] Ashwal-Fluss R, Meyer M, Pamudurti NR , et al. circRNA biogenesis competes with pre-mRNA spli-cing[J]. Mol Cell, 2014,56(1):55-66.
doi: 10.1016/j.molcel.2014.08.019 pmid: 25242144
[10] Xu H, Guo S, Li W , et al. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcrip-tion and secretion in islet cells[J]. Sci Rep, 2015,5:12453.
doi: 10.1038/srep12453 pmid: 26211738
[11] Li F, Zhang L, Li W , et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway[J]. Oncotarget, 2015,6(8):6001-6013.
doi: 10.18632/oncotarget.3469 pmid: 25749389
[12] Heo JS, Choi Y, Kim HS , et al. Comparison of mo-lecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue[J]. Int J Mol Med, 2016,37(1):115-125.
doi: 10.3892/ijmm.2015.2413 pmid: 26719857
[13] Pires AO, Mendes-Pinheiro B, Teixeira FG , et al. Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis[J]. Stem Cells Dev, 2016,25(14):1073-1083.
doi: 10.1089/scd.2016.0048 pmid: 27226274
[14] 周洁, 王颖, 张雷 , 等. 牙源性干细胞的特点及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2018,45(3):280-285.
Zhou J, Wang Y, Zhang L , et al. Characteristics of dental tissue-derived stem cells and their application in bone tissue engineering[J]. Int J Stomatol, 2018,45(3):280-285.
[15] 叶青松, 王晓燕 . 牙源性干细胞储存和临床应用的研究进展[J]. 口腔疾病防治, 2018,26(1):15-25.
Ye QS, Wang XY . Progress in storage and clinical application of dental stem cells[J]. J Dent Prev Treat, 2018,26(1):15-25.
[16] Laino G, d’Aquino R, Graziano A , et al. A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB)[J]. J Bone Miner Res, 2005(8):1394-1402.
doi: 10.1359/JBMR.050325 pmid: 16007337
[17] Amir LR, Suniarti DF, Utami S , et al. Chitosan as a potential osteogenic factor compared with dexame-thasone in cultured macaque dental pulp stromal cells[J]. Cell Tissue Res, 2014,358(2):407-415.
doi: 10.1007/s00441-014-1938-1 pmid: 24992928
[18] Seo BM, Sonoyama W, Yamaza T , et al. SHED repair critical-size calvarial defects in mice[J]. Oral Dis, 2008,14(5):428-434.
doi: 10.1111/j.1601-0825.2007.01396.x pmid: 18938268
[19] Bahn JH, Zhang Q, Li F , et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva[J]. Clin Chem, 2015,61(1):221-230.
doi: 10.1373/clinchem.2014.230433 pmid: 25376581
[20] 张雄, 陈良娇, 兰泽栋 . 基因芯片筛选人牙周膜干细胞成骨向分化生物学标记物的研究[J]. 广东医学, 2016,37(14):2080-2083.
Zhang X, Chen LJ, Lan ZD . Screening of biomarkers for osteogenic differentiation of human periodontal ligament stem cells by gene chip[J]. Guangdong Med J, 2016,37(14):2080-2083.
[21] Zheng Y, Li X, Huang Y , et al. The circular RNA landscape of periodontal ligament stem cells during osteogenesis[J]. J Periodontol, 2017,88(9):906-914.
doi: 10.1902/jop.2017.170078 pmid: 28598284
[22] Gu X, Li M, Jin Y , et al. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation[J]. BMC Genet, 2017,18(1):100.
doi: 10.1186/s12863-017-0569-4 pmid: 29197342
[23] Wang H, Feng C, Jin Y , et al. Identification and cha-racterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells[J]. J Cell Physiol, 2019,234(7):10166-10177.
doi: 10.1002/jcp.27686 pmid: 30422310
[24] Li Y, Zheng Q, Bao C , et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Res, 2015,25(8):981-984.
doi: 10.1038/cr.2015.82 pmid: 26138677
[25] Cui Y, Luan J, Li H , et al. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression[J]. FEBS Lett, 2016,590(1):185-192.
doi: 10.1002/1873-3468.12024 pmid: 26763102
[26] Yan YX, Gong YW, Guo Y , et al. Mechanical strain regulates osteoblast proliferation through integrin-mediated ERK activation[J]. PLoS One, 2012,7(4):e35709.
doi: 10.1371/journal.pone.0035709 pmid: 22539993
[27] Raicevic G, Najar M, Pieters K , et al. Inflammation and Toll-like receptor ligation differentially affect the osteogenic potential of human mesenchymal stromal cells depending on their tissue origin[J]. Tissue Eng Part A, 2012,18(13/14):1410-1418.
doi: 10.1089/ten.TEA.2011.0434 pmid: 22429150
[28] Li C, Li B, Dong Z , et al. Lipopolysaccharide dif-ferentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor κB pathway[J]. Stem Cell Res Ther, 2014,5(3):67.
doi: 10.1186/scrt456 pmid: 24887697
[29] Huang J, Zhao L, Xing L , et al. MicroRNA-204 re-gulates Runx2 protein expression and mesenchymal progenitor cell differentiation[J]. Stem Cells, 2010,28(2):357-364.
[30] Wang H, Meng Y, Cui Q , et al. MiR-101 targets the EZH2/Wnt/β-catenin the pathway to promote the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J]. Sci Rep, 2016,6:36988.
doi: 10.1038/srep36988 pmid: 27845386
[31] Zhang ZC, Liu JX, Shao ZW , et al. In vitro effect of microRNA-107 targeting Dkk-1 by regulation of Wnt/β-catenin signaling pathway in osteosarcoma[J]. Medicine (Baltimore), 2017,96(27):e7245.
doi: 10.1097/MD.0000000000007245 pmid: 28682874
[32] Li X, Zheng Y, Zheng Y , et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway[J]. Stem Cell Res Ther, 2018,9(1):232.
doi: 10.1186/s13287-018-0976-0 pmid: 30170617
[33] 占云燕, 张皓, 杨国斌 , 等. 小鼠牙乳头细胞向成牙本质细胞向分化过程中环状RNA的表达谱研究[J]. 口腔医学研究, 2018,34(4):371-374.
Zhan YY, Zhang H, Yang GB , et al. Analysis of circle RNA expression profile variation during odon-toblastic differentiation of mouse dental papilla cells[J]. J Oral Sci Res, 2018,34(4):371-374.
[34] Li Z, Li N, Ge X , et al. Differential circular RNA expression profiling during osteogenic differentiation of stem cells from apical papilla[J]. Epigenomics, 2019,11(9):1057-1073.
doi: 10.2217/epi-2018-0184 pmid: 31140301
[35] Li X, Peng B, Zhu X , et al. Changes in related circular RNAs following ERβ knockdown and the relation-ship to rBMSC osteogenesis[J]. Biochem Biophys Res Commun, 2017,493(1):100-107.
doi: 10.1016/j.bbrc.2017.09.068 pmid: 28919414
[36] Zhang M, Jia L , Zheng Y. circRNA expression pro-files in human bone marrow stem cells undergoing osteoblast differentiation[J]. Stem Cell Rev Rep, 2019,15(1):126-138.
doi: 10.1007/s12015-018-9841-x pmid: 30046991
[37] 赵可伟 . 绝经后骨质疏松环状RNA表达谱研究及潜在分子标志物筛选[D]. 广州: 南方医科大学, 2018.
Zhao KW . Microarry analysis of circular RNA expression profile and the screening of potential biomarkers for postmenopausal osteoporosis[D]. Guangzhou: Southern Medical University, 2018.
[38] Yin Q, Wang J, Fu Q , et al. CircRUNX2 through has-miR-203 regulates RUNX2 to prevent osteopo-rosis[J]. J Cell Mol Med, 2018, (12):6112-6121.
doi: 10.1111/jcmm.13888 pmid: 30324718
[39] Yang L, Zeng Z, Kang N , et al. Circ-VANGL1 pro-motes the progression of osteoporosis by absorbing miRNA-217 to regulate RUNX2 expression[J]. Eur Rev Med Pharmacol Sci, 2019,23(3):949-957.
doi: 10.26355/eurrev_201902_16981 pmid: 30779060
[40] Ren W, Yang L, Deng T , et al. Calcitonin gene-related peptide regulates FOSL2 expression and cell proliferation of BMSCs via mmu_circRNA_003795[J]. Mol Med Rep, 2019,19(5):3732-3742.
doi: 10.3892/mmr.2019.10038 pmid: 30896827
[41] Qian DY, Yan GB, Bai B , et al. Differential circRNA expression profiles during the BMP2-induced osteo-genic differentiation of MC3T3-E1 cells[J]. Biomed Pharmacother, 2017,90:492-499.
doi: 10.1016/j.biopha.2017.03.051 pmid: 28395271
[42] Long T, Guo Z, Han L , et al. Differential expression profiles of circular RNAs during osteogenic differen-tiation of mouse adipose-derived stromal cells[J]. Calcif Tissue Int, 2018,103(3):338-352.
doi: 10.1007/s00223-018-0426-0 pmid: 29700558
[43] Li S, Lin C, Zhang J , et al. Quaking promotes the odontoblastic differentiation of human dental pulp stem cells[J]. J Cell Physiol, 2018,233(9):7292-7304.
doi: 10.1002/jcp.26561 pmid: 29663385
[1] Li Liheng,Wang Rui,Wang Xiaoming,Zhang Zhiyi,Zhang Xuan,An Feng,Wang Qin,Zhang Fan. Effects of circular RNA hsa_circ_0085576 on cell migration and invasion of oral squamous cell carcinoma by regulating the microRNA-498/B-cell-specific Moloney murine leukemia virus integration site 1 axis [J]. Int J Stomatol, 2024, 51(1): 60-67.
[2] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[3] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[4] Li Peitong,Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.. Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues [J]. Int J Stomatol, 2023, 50(1): 37-42.
[5] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[6] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[7] Shi Peilei,Yu Chenhao,Xie Xudong,Wu Yafei,Wang Jun. Research progress on the application of dental-derived mesenchymal stem cells in periodontal defect repair [J]. Int J Stomatol, 2021, 48(6): 690-695.
[8] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[9] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[10] Gong Jinglei,Huang Yanmei,Wang Jun. Research progress on multiphasic scaffold in periodontal regeneration [J]. Int J Stomatol, 2021, 48(5): 563-569.
[11] Deng Shiyong,Gong Ping,Tan Zhen. Effects of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 gene on the regulation of oral and systemic bone metabolism [J]. Int J Stomatol, 2021, 48(2): 198-204.
[12] Chen Ye, Zhou Feng, Wu Qionghui, Che Huiling, Li Jiaxuan, Shen Jiaqi, Luo En. Effect of adiponectin on bone marrow mesenchymal stem cells and its regulatory mechanisms [J]. Int J Stomatol, 2021, 48(1): 58-63.
[13] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[14] Lü Hui,Wang Hua,Sun Wen. T helper cell 17 and periodontitis related osteoimmunology [J]. Int J Stomatol, 2020, 47(6): 661-668.
[15] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .