Int J Stomatol ›› 2020, Vol. 47 ›› Issue (4): 439-444.doi: 10.7518/gjkq.2020037

• Reviews • Previous Articles     Next Articles

Research progress on the preparation of titanium-based implant surface coatings by micro-arc oxidation

Wang Huan1,Liu Yang1,Qi Mengchun1(),Li Jingyi1,Liu Mengnan1,Sun Hong2   

  1. 1. College of Stomatology, North China University of Science and Technology, Tangshan 063210, China
    2. College of Basic Medicine, North China University of Science and Technology, Tangshan 063210, China
  • Received:2019-11-29 Revised:2020-04-12 Online:2020-07-01 Published:2020-07-10
  • Contact: Mengchun Qi E-mail:qimengchun@163.com
  • Supported by:
    This study was supported by Key Scientific and Technological Research Projects of Colleges and Universities in Hebei Province(ZD2015005)

Abstract:

Titanium and its alloys are widely used as alternative materials for dental implants and bone tissue repair in orthopaedic surgery due to their superior mechanical properties and biocompatibility. However, the surface of these materials is biologically inert and needs to be modified to improve their osteogenic and antibacterial properties. Micro-arc oxidation (MAO) has become a popular surface modification technology because it can conveniently and effectively modify the surface of implants by element doping and morphology. This method can greatly improve the biological properties of titanium-based implants. TiO2 coatings with different morphologies and chemical compositions can be prepared on the surface of titanium-based implants by adjusting the reaction parameters of MAO and combining with other surface modification techniques. This strategy can improve the osteogenic and antibacterial properties of implants and increase the planting success rate. In this paper, the surface coatings of titanium implants prepared by MAO and their osteogenic and antibacterial properties will be reviewed.

Key words: micro-arc oxidation, implant, TiO2 coating, surface modification, osteogenic property, antibacterial property

CLC Number: 

  • R783.1

TrendMD: 
[1] Zhao QM, Yi L, Jiang LB, et al. Surface functiona-lization of titanium with zinc/strontium-doped ti-tanium dioxide microporous coating via microarc oxidation[J]. Nanomed-Nanotechnol Biol Med, 2019,16:149-161.
[2] Sandeep Kranthi Kiran A, Sireesha M, Ramalingam R, et al. Modulation of biological properties by grain refinement and surface modification on titanium sur- faces for implant-related infections[J]. J Mater Sci, 2019,54(20):13265-13282.
[3] Nyan M, Hao J, Miyahara T, et al. Accelerated and enhanced bone formation on novel simvastatin-loaded porous titanium oxide surfaces[J]. Clin Implant Dent Relat Res, 2014,16(5):675-683.
doi: 10.1111/cid.12045 pmid: 23399109
[4] Zhou R, Wei DQ, Yang HY, et al. MC3T3-E1 cell response of amorphous phase/TiO2 nanocrystal com-posite coating prepared by microarc oxidation on titanium[J]. Mater Sci Eng C Mater Biol Appl, 2014,39:186-195.
doi: 10.1016/j.msec.2014.03.006 pmid: 24863215
[5] Song WH, Jun YK, Han Y, et al. Biomimetic apatite coatings on micro-arc oxidized titania[J]. Biomaterials, 2004,25(17):3341-3349.
doi: 10.1016/j.biomaterials.2003.09.103 pmid: 15020106
[6] Xu L, Wu C, Lei XC, et al. Effect of oxidation time on cytocompatibility of ultrafine-grained pure Ti in micro-arc oxidation treatment[J]. Surf Coat Technol, 2018,342:12-22.
[7] Guo HF, An MZ, Huo HB, et al. Microstructure cha-racteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions[J]. Appl Surf Sci, 2006,252(22):7911-7916.
[8] Babaei M, Dehghanian C, Taheri P, et al. Effect of duty cycle and electrolyte additive on photocatalytic performance of TiO2-ZrO2 composite layers prepared on CP Ti by micro arc oxidation method[J]. Surf Coat Technol, 2016,307:554-564.
[9] Yang W, Xu DP, Guo QQ, et al. Influence of electro-lyte composition on microstructure and properties of coatings formed on pure Ti substrate by micro arc oxidation[J]. Surf Coat Technol, 2018,349:522-528.
[10] Li GL, Cao HL, Zhang WJ, et al. Enhanced osseoin-tegration of hierarchical micro/nanotopographic ti-tanium fabricated by microarc oxidation and electro-chemical treatment[J]. ACS Appl Mater Interfaces, 2016,8(6):3840-3852.
doi: 10.1021/acsami.5b10633 pmid: 26789077
[11] Rupp F, Scheideler L, Olshanska N, et al. Enhancing surface free energy and hydrophilicity through che-mical modification of microstructured titanium im-plant surfaces[J]. J Biomed Mater Res A, 2006,76(2):323-334.
doi: 10.1002/jbm.a.30518 pmid: 16270344
[12] Qiao SC, Cao HL, Zhao X, et al. Ag-plasma modi-fication enhances bone apposition around titanium dental implants: an animal study in Labrador dogs[J]. Int J Nanomedicine, 2015,10:653-664.
doi: 10.2147/IJN.S73467 pmid: 25609967
[13] Xu L, Zhang K, Wu C, et al. Micro-arc oxidation enhances the blood compatibility of ultrafine-grained pure titanium[J]. Materials (Basel), 2017,10(12):E1446.
[14] Zhou WC, Huang O, Gan YZ, et al. Effect of ti-tanium implants with coatings of different pore sizes on adhesion and osteogenic differentiation of BMSCs[J]. Artif Cells Nanomed Biotechnol, 2019,47(1):290-299.
doi: 10.1080/21691401.2018.1553784 pmid: 30688103
[15] Zhang WJ, Wang GC, Liu Y, et al. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration[J]. Biomaterials, 2013,34(13):3184-3195.
doi: 10.1016/j.biomaterials.2013.01.008 pmid: 23380352
[16] Zhang RR, Elkhooly TA, Huang QL, et al. Effects of the hierarchical macro/mesoporous structure on the osteoblast-like cell response[J]. J Biomed Mater Res A, 2018,106(7):1896-1902.
[17] Zhou HZ, Li YD, Liu L, et al. Early osseointegration of implants with cortex-like TiO2 coatings formed by micro-arc oxidation: a histomorphometric study in rabbits[J]. J Huazhong Univ Sci Technolog Med Sci, 2017,37(1):122-130.
doi: 10.1007/s11596-017-1705-0 pmid: 28224420
[18] Li YD, Wang WQ, Liu HY, et al. Formation and in vitro/in vivo performance of “cortex-like” micro/nano-structured TiO2 coatings on titanium by micro-arc oxidation[J]. Mater Sci Eng C Mater Biol Appl, 2018,87:90-103.
doi: 10.1016/j.msec.2018.02.023 pmid: 29549953
[19] Surmenev RA, Surmeneva MA, Ivanova AA. Signi-ficance of calcium phosphate coatings for the en-hancement of new bone osteogenesis: a review[J]. Acta Biomater, 2014,10(2):557-579.
doi: 10.1016/j.actbio.2013.10.036 pmid: 24211734
[20] Pilmane M, Salma-Ancane K, Loca D, et al. Strontium and strontium ranelate: historical review of some of their functions[J]. Mater Sci Eng C Mater Biol Appl, 2017,78:1222-1230.
doi: 10.1016/j.msec.2017.05.042 pmid: 28575961
[21] Sangeetha K, Ashok M, Girija EK, et al. Strontium and ciprofloxacin modified hydroxyapatites as functional grafts for bone prostheses[J]. Ceram Int, 2018,44(12):13782-13789.
[22] Yan J, Sun JF, Chu PK, et al. Bone integration capa-bility of a series of strontium-containing hydroxya-patite coatings formed by micro-arc oxidation[J]. J Biomed Mater Res A, 2013,101(9):2465-2480.
doi: 10.1002/jbm.a.34548 pmid: 23348908
[23] Sato M, Chen P, Tsutsumi Y, et al. Effect of stron-tium ions on calcification of preosteoblasts cultured on porous calcium- and phosphate-containing titanium oxide layers formed by micro-arc oxidation[J]. Dent Mater J, 2016,35(4):627-634.
doi: 10.4012/dmj.2016-032 pmid: 27477229
[24] Qin S, Xu KH, Nie BN, et al. Approaches based on passive and active antibacterial coating on titanium to achieve antibacterial activity[J]. J Biomed Mater Res A, 2018,106(9):2531-2539.
doi: 10.1002/jbm.a.36413 pmid: 29603857
[25] Song WH, Ryu HS, Hong SH. Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation[J]. J Biomed Mater Res A, 2009,88(1):246-254.
doi: 10.1002/jbm.a.31877 pmid: 18286618
[26] Goudouri OM, Kontonasaki E, Lohbauer U, et al. Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy[J]. Acta Biomater, 2014,10(8):3795-3810.
doi: 10.1016/j.actbio.2014.03.028 pmid: 24704700
[27] Chai HW, Guo L, Wang XT, et al. Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo[J]. J Mater Sci Mater Med, 2011,22(11):2525-2535.
doi: 10.1007/s10856-011-4427-z pmid: 21870079
[28] Simchi A, Tamjid E, Pishbin F, et al. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications[J]. Nanomed-Nanotechnol Biol Med, 2011,7(1):22-39.
doi: 10.1016/j.nano.2010.10.005
[29] Wu HB, Zhang XY, Geng ZH, et al. Preparation, anti-bacterial effects and corrosion resistant of porous Cu-TiO2 coatings[J]. Appl Surf Sci, 308:43-49.
[30] Huang QL, Li XZ, Elkhooly TA, et al. The Cu-containing TiO2 coatings with modulatory effects on macrophage polarization and bactericidal capacity prepared by micro-arc oxidation on titanium sub-strates[J]. Colloids Surf B Biointerfaces, 2018,170:242-250.
doi: 10.1016/j.colsurfb.2018.06.020 pmid: 29933233
[31] Zhang EL, Li FB, Wang HY, et al. A new antibac-terial titanium-copper sintered alloy: preparation and antibacterial property[J]. Mater Sci Eng C Mater Biol Appl, 2013,33(7):4280-4287.
doi: 10.1016/j.msec.2013.06.016 pmid: 23910344
[32] Yao XH, Zhang XY, Wu HB, et al. Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation[J]. Appl Surf Sci, 2014,292:944-947.
doi: 10.1016/j.apsusc.2013.12.083
[33] Nriagu J. Zinc deficiency in human health//Nriagu J ed. Encyclopedia of environmental health[M]. Amsterdam: Elsevier, 2011: 789-800.
[34] Yu JM, Xu LZ, Li K, et al. Zinc-modified calcium silicate coatings promote osteogenic differentiation through TGF-β/Smad pathway and osseointegration in osteopenic rabbits[J]. Sci Rep, 2017,7(1):3440.
doi: 10.1038/s41598-017-03661-5 pmid: 28611362
[35] Rokosz K, Hryniewicz T, Gaiaschi S, et al. Novel porous phosphorus-calcium-magnesium coatings on titanium with copper or zinc obtained by DC plasma electrolytic oxidation: fabrication and characteriza-tion[J]. Materials (Basel), 2018,11(9):E1680.
[36] Li M, Li D, Qu L, et al. Study on Ag bio-coatings on titanium alloy by ultrasonic auxiliary micro-arc oxi-dation [C]//Proceedings of 2011 6th International Forum on Strategic Technology, Harbin, 2011. IEEE, 2011. doi: 10.1109/ifost.2011.6021002.
[37] Lee JL, Kuo KN, Sung TL, et al. Preparation of antibacterial ceramic coatings containing Ag on titanium alloy by use of microarc oxidation[J]. IEEE Trans Plasma Sci, 2016,44(12):3179-3182.
[38] He XJ, Zhang XY, Bai L, et al. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings[J]. Biomed Mater, 2016,11(4):045008.
doi: 10.1088/1748-6041/11/4/045008 pmid: 27508428
[39] Liu GG, Zhao GX, Zhou W, et al. In situ bond modu-lation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production[J]. Adv Funct Mater, 2016,26(37):6822-6829.
[1] Tang Chunbo. Restorative space in edentulous patients and the clinical decision of implant restoration [J]. Int J Stomatol, 2024, 51(1): 1-9.
[2] Han Chong,He Dongning,Yu Feiyan,Wu Dongchao. Research progress on the mechanism and treatment of pain after oral implants [J]. Int J Stomatol, 2024, 51(1): 99-106.
[3] Sun Xu,Deng Zhennan,Wen Cai,Zhao Ying. Implant surface micromorphological changes after Er: YAG laser irradiation observed under scanning electron microscope [J]. Int J Stomatol, 2023, 50(6): 669-673.
[4] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[5] Liao Honglin,Fang Zhonghan,Zhang Yanyan,Liu Fei,Shen Jiefei.. Diagnosis and treatment of post-traumatic trigeminal neuropathic pain after dental implantation [J]. Int J Stomatol, 2023, 50(6): 729-738.
[6] Gong Jiaming,Zhao Ruimin,Pan Hongwei,Lang Xin,Yu Zhanhai,Li Jianxue. Meta-analysis of dynamic navigation versus static navigation in the accuracy of implant surgery [J]. Int J Stomatol, 2023, 50(5): 538-551.
[7] Liu Yuntong,Liu Chang,Gao Lichao,Luo Yuxue,Cao Yubin,Hua Chengge.. Research progress on the postoperative inferior alveolar neurosensory disturbance [J]. Int J Stomatol, 2023, 50(4): 479-484.
[8] Zhu Keshi,Liao Anqi,Yu Youcheng.. Research progress on the application of machine learning in dental implantology [J]. Int J Stomatol, 2023, 50(4): 491-498.
[9] Lu Qian,Xia Haibin,Wang Min.. Research progress on implantoplasty in the treatment of peri-implantitis [J]. Int J Stomatol, 2023, 50(2): 152-158.
[10] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[11] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[12] Gong Jiaming,Zhao Ruimin,Li Wanxin,Su Linhan,Yu Zhanhai,Li Jianxue. The socket-shield technique for immediate implant placement: a meta-analysis of randomized controlled trials [J]. Int J Stomatol, 2022, 49(5): 537-547.
[13] Luo Qiyue,Liu Yeyu,Luo Yilin,Man Yi.. Centric relation centered, facial esthetically and prosthetically driven digital workflow for edentulism implant rehabilitation: a clinical report [J]. Int J Stomatol, 2022, 49(4): 426-431.
[14] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[15] Cao Zhengguo. Periodontal considerations in prosthetic dentistry [J]. Int J Stomatol, 2022, 49(1): 1-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .