Int J Stomatol ›› 2020, Vol. 47 ›› Issue (3): 270-277.doi: 10.7518/gjkq.2020023

• Mesenchymal Stem Cell • Previous Articles     Next Articles

Comparative review of growth factors inducing 3D in vitro cartilage formation of mesenchymal stem cells

Zhu Mingjing,Zhang Qingbin()   

  1. Key Laboratory of Oral Medicine, Guangzhou 510140, China
  • Received:2019-08-12 Revised:2019-11-26 Online:2020-05-01 Published:2020-05-08
  • Contact: Qingbin Zhang E-mail:doctorqingbin@hotmail.com

Abstract:

The ability of marrow-derived mesenchymal stem cells (MSCs) to undergo chondrogenic differentiation has been studied extensively. The chondrogenic potential of these stem cells differs from one another. In general, the most common growth factors for chondrogenic induction originate from the transforming growth factor (TGF) -β superfamily. A thorough review of literature indicates that MSCs exhibit the highest chondrogenic potential in 3D culture in the medium containing dexamethasone and TGF-β3. Several reports indicated that the addition of TGF-β1, TGF-β2 and TGF-β3; bone morphogenetic protein (BMP)-2, BMP-4, BMP-6, BMP-7 and BMP-9; and several types of fibroblast growth factor-2. Glucocorticoids and insulin-like growth factor-1 promote MSCs for chondrogenic differentiation, but these results are still not consistently supported. However, to date, current formulations do not always induce the stable differentiation of MSC cartilages. In this paper, the effects of each growth factor alone and in combination on the 3D in vitro cartilage differentiation of MSCs were reviewed.

Key words: mesenchymal stem cell, chondrogenic differentiation, growth factor, transforming growth factor, bone morphogenetic protein

CLC Number: 

  • Q254

TrendMD: 
[1] Vayas R, Reyes R, Rodríguez-Évora M , et al. Eva-luation of the effectiveness of a bMSC and BMP-2 polymeric trilayer system in cartilage repair[J]. Biomed Mater, 2017,12(4):045001.
doi: 10.1088/1748-605X/aa6f1c pmid: 28675146
[2] Vukicevic S, Grgurevic L . BMP-6 and mesenchymal stem cell differentiation[J]. Cytokine Growth Factor Rev, 2009,20(5/6):441-448.
doi: 10.1016/j.cytogfr.2009.10.020 pmid: 19900832
[3] Puetzer JL, Petitte JN, Loboa EG . Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue[J]. Tissue Eng Part B Rev, 2010,16(4):435-444.
doi: 10.1089/ten.TEB.2009.0705 pmid: 20196646
[4] Barry F, Boynton RE, Liu B , et al. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components[J]. Exp Cell Res, 2001,268(2):189-200.
doi: 10.1006/excr.2001.5278 pmid: 11478845
[5] 李乔乔, 吴振强, 张丽君 . 骨髓间充质干细胞的定向分化潜能[J]. 中国组织工程研究, 2017,21(25):4082-4087.
Li QQ, Wu ZQ, Zhang LJ . Directional differentiation of bone marrow mesenchymal stem cells[J]. Chin J Tissue Eng Res, 2017,21(25):4082-4087.
[6] Yue DY, Zhang MX, Lu J , et al. The rate of fluid shear stress is a potent regulator for the differen-tiation of mesenchymal stem cells[J]. J Cell Physiol, 2019. doi: 10.1002/jcp.28296.
doi: 10.1002/jcp.28296 pmid: 30784070
[7] Chen XY, Qin ZN, Zhao JM , et al. Pulsed magnetic field stimuli can promote chondrogenic differentia-tion of superparamagnetic iron oxide nanoparticles-labeled mesenchymal stem cells in rats[J]. J Biomed Nanotechnol, 2018,14(12):2135-2145.
doi: 10.1166/jbn.2018.2644 pmid: 30305220
[8] Nasrabadi D, Rezaeiani S, Eslaminejad MB , et al. Improved protocol for chondrogenic differentiation of bone marrow derived mesenchymal stem cells- effect of PTHrP and FGF-2 on TGFβ1/BMP2-induced chondrocytes hypertrophy[J]. Stem Cell Rev Rep, 2018,14(5):755-766.
doi: 10.1007/s12015-018-9816-y pmid: 29691795
[9] Bernardo ME, Emons JA, Karperien M , et al. Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation com-pared with other sources[J]. Connect Tissue Res, 2007,48(3):132-140.
doi: 10.1080/03008200701228464 pmid: 17522996
[10] Steadman JR, Rodkey WG, Rodrigo JJ . Microfracture: surgical technique and rehabilitation to treat chondral defects[J]. Clin Orthop Relat Res, 2001(391 Suppl):S362-S369.
[11] Borem R, Madeline A, Bowman M , et al. Differential effector response of amnion- and adipose-derived mesenchymal stem cells to inflammation; implica-tions for intradiscal therapy[J]. J Orthop Res, 2019,37(11):2445-2456.
doi: 10.1002/jor.24412 pmid: 31287173
[12] Xu LL, Liu YM, Sun YX , et al. Tissue source dete-rmines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesen-chymal stem cells from bone marrow and adipose tissue[J]. Stem Cell Res Ther, 2017,8(1):275.
doi: 10.1186/s13287-017-0716-x pmid: 29208029
[13] Bousnaki M, Bakopoulou A, Papadogianni D , et al. Fibro/chondrogenic differentiation of dental stem cells into chitosan/alginate scaffolds towards temporomandibular joint disc regeneration[J]. J Mater Sci Mater Med, 2018,29(7):97.
doi: 10.1007/s10856-018-6109-6 pmid: 29946796
[14] Yao L, Flynn N . Dental pulp stem cell-derived chondrogenic cells demonstrate differential cell motility in type Ⅰ and type Ⅱ collagen hydrogels[J]. Spine J, 2018,18(6):1070-1080.
doi: 10.1016/j.spinee.2018.02.007 pmid: 29452287
[15] Liang Y, Idrees E, Szojka ARA , et al. Chondrogenic differentiation of synovial fluid mesenchymal stem cells on human meniscus-derived decellularized matrix requires exogenous growth factors[J]. Acta Biomater, 2018,80:131-143.
doi: 10.1016/j.actbio.2018.09.038 pmid: 30267878
[16] Li Y, Tian AY, Ophene J , et al. TGF-β stimulates endochondral differentiation after denervation[J]. Int J Med Sci, 2017,14(4):382-389.
doi: 10.7150/ijms.17364 pmid: 28553171
[17] Zhou Q, Li BJ, Zhao JL , et al. IGF-I induces adipose derived mesenchymal cell chondrogenic differentia-tion in vitro and enhances chondrogenesis in vivo[J]. In Vitro Cell Dev Biol Anim, 2016,52(3):356-364.
[18] Zhang YD, Zhao SC, Zhu ZS , et al. Cx43- and smad-mediated TGF-β/BMP signaling pathway promotes cartilage differentiation of bone marrow mesenchymal stem cells and inhibits osteoblast differentiation[J]. Cell Physiol Biochem, 2017,42(4):1277-1293.
doi: 10.1159/000478957 pmid: 28697500
[19] Liu JC, Liu X, Zhou GD , et al. Conditioned medium from chondrocyte/scaffold constructs induced chon-drogenic differentiation of bone marrow stromal cells[J]. Anat Rec (Hoboken), 2012,295(7):1109-1116.
doi: 10.1002/ar.22500 pmid: 22644958
[20] Tuli R, Tuli S, Nandi S , et al. Transforming growth factor-β-mediated chondrogenesis of human me-senchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk[J]. J Biol Chem, 2003,278(42):41227-41236.
doi: 10.1074/jbc.M305312200 pmid: 12893825
[21] Grier WK, Tiffany AS, Ramsey MD , et al. Incor-porating β-cyclodextrin into collagen scaffolds to sequester growth factors and modulate mesenchymal stem cell activity[J]. Acta Biomater, 2018,76:116-125.
doi: 10.1016/j.actbio.2018.06.033 pmid: 29944975
[22] Zhai CJ, Zhang X, Chen J , et al. The effect of carti-lage extracellular matrix particle size on the chondro-genic differentiation of bone marrow mesenchymal stem cells[J]. Regen Med, 2019,14(7):663-680.
doi: 10.2217/rme-2018-0082 pmid: 31313645
[23] Zhou M, Lozano N, Wychowaniec JK , et al. Graphene oxide: a growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels[J]. Acta Biomater, 2019,96:271-280.
doi: 10.1016/j.actbio.2019.07.027 pmid: 31325577
[24] Haas AR, Tuan RS . Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: Ⅱ. Stimulation by bone morphogenetic pro-tein-2 requires modulation of N-cadherin expression and function[J]. Differentiation, 1999,64(2):77-89.
doi: 10.1046/j.1432-0436.1999.6420077.x pmid: 10234805
[25] Lee SH, Shin H . Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering[J]. Adv Drug Deliv Rev, 2007,59(4/5):339-359.
doi: 10.1016/j.addr.2007.03.016 pmid: 17499384
[26] Zhao XX, An XL, Zhu XC , et al. Inhibiting trans-forming growth factor-β signaling regulates in vitro maintenance and differentiation of bovine bone marrow mesenchymal stem cells[J]. J Exp Zool B Mol Dev Evol, 2018,330(8):406-416.
doi: 10.1002/jez.b.22836 pmid: 30460778
[27] Zhang L, Su P, Xu C , et al. Chondrogenic differentia-tion of human mesenchymal stem cells: a com-parison between micromass and pellet culture systems[J]. Biotechnol Lett, 2010,32(9):1339-1346.
doi: 10.1007/s10529-010-0293-x pmid: 20464452
[28] Finger AR, Sargent CY, Dulaney KO , et al. Differential effects on messenger ribonucleic acid expression by bone marrow-derived human mesenchymal stem cells seeded in agarose constructs due to ramped and steady applications of cyclic hydrostatic pressure[J]. Tissue Eng, 2007,13(6):1151-1158.
doi: 10.1089/ten.2006.0290 pmid: 17518710
[29] Hennig T, Lorenz H, Thiel A , et al. Reduced chon-drogenic potential of adipose tissue derived stromal cells correlates with an altered TGFβ receptor and BMP profile and is overcome by BMP-6[J]. J Cell Physiol, 2007,211(3):682-691.
doi: 10.1002/jcp.20977 pmid: 17238135
[30] Fang DP, Jin P, Huang QX , et al. Platelet-rich plasma promotes the regeneration of cartilage engineered by mesenchymal stem cells and collagen hydrogel via the TGF-β/SMAD signaling pathway[J]. J Cell Phy-siol, 2019. doi: 10.1002/jcp.28211.
[31] 周晓旭, 彭俊, 胡海 , 等. TGF-β3, HA, PTHrP对人脐带间充质干细胞成软骨分化的影响[J]. 中国比较医学杂志, 2019,29(10):26-32.
Zhou XX, Peng J, Hu H , et al. Effects of transfor-ming growth factor β3, hyaluronic acid, and parathy-roid hormone-related protein on chondrogenic diffe-rentiation of human umbilical cord mesenchymal stem cells[J]. Chin J Comp Med, 2019,29(10):26-32.
[32] Renner JN, Kim Y, Liu JC . Bone morphogenetic protein-derived peptide promotes chondrogenic differentiation of human mesenchymal stem cells[J]. Tissue Eng Part A, 2012,18(23/24):2581-2589.
doi: 10.1089/ten.TEA.2011.0400 pmid: 22765926
[33] Lee PT, Li WJ . Chondrogenesis of embryonic stem cell-derived mesenchymal stem cells induced by TGFβ1 and BMP7 through increased TGFβ receptor expression and endogenous TGFβ1 production[J]. J Cell Biochem, 2017,118(1):172-181.
doi: 10.1002/jcb.25623 pmid: 27292615
[34] Goessler UR, Bugert P, Bieback K , et al. In-vitro analysis of the expression of TGFβ-superfamily-members duringchondrogenic differentiation of me-senchymal stem cells and chondrocytes during de-differentiation in cell culture[J]. Cell Mol Biol Lett, 2005,10(2):345-362.
pmid: 16010298
[35] Fu P, Chen S, Ding Z , et al. Mechanical stimulation promotes osteogenic and chondrogenic differentia-tion of synovial mesenchymal stem cells through BMP-2[J]. Int J Clin Exp Med, 2017,10(2):2842-2849.
[36] Sekiya I, Colter DC, Prockop DJ . BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells[J]. Biochem Biophys Res Commun, 2001,284(2):411-418.
doi: 10.1006/bbrc.2001.4898 pmid: 11394894
[37] 常晓朋, 陈涛, 赵寅 , 等. 骨形态发生蛋白2和转化生长因子β2协同促进骨髓间充质干细胞成骨分化[J]. 中国组织工程研究, 2019,23(1):1-6.
Chang XP, Chen T, Zhao Y , et al. Synergistic effect of bone morphogenetic protein 2 and transforming growth factor β2 on osteogenic differentiation of bone marrow mesenchymal stem cells[J]. Chin J Tissue Eng Res, 2019,23(1):1-6.
[38] Majumdar MK, Wang E, Morris EA . BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and over-comes the inhibitory effect of IL-1[J]. J Cell Physiol, 2001,189(3):275-284.
doi: 10.1002/jcp.10025 pmid: 11748585
[39] Freyria AM, Mallein-Gerin F . Chondrocytes or adult stem cells for cartilage repair: the indisputable role of growth factors[J]. Injury, 2012,43(3):259-265.
doi: 10.1016/j.injury.2011.05.035 pmid: 21696723
[40] Lee TH, Kim WT, Ryu CJ , et al. Optimization of treatment with recombinant FGF-2 for proliferation and differentiation of human dental stem cells, me-senchymal stem cells, and osteoblasts[J]. Biochem Cell Biol, 2015,93(4):298-305.
doi: 10.1139/bcb-2014-0140 pmid: 25789782
[41] Zhang W, Green C, Stott NS . Bone morphogenetic protein-2 modulation of chondrogenic differentiation in vitro involves gap junction-mediated intercellular communication[J]. J Cell Physiol, 2002,193(2):233-243.
doi: 10.1002/jcp.10168 pmid: 12385001
[42] Endo K, Fujita N, Nakagawa T , et al. Effect of fibro-blast growth factor-2 and serum on canine mesenchymal stem cell chondrogenesis[J]. Tissue Eng Part A, 2019,25(11/12):901-910.
doi: 10.1089/ten.TEA.2018.0177 pmid: 30319056
[43] Solchaga LA, Penick K, Goldberg VM , et al. Fibro-blast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells[J]. Tissue Eng Part A, 2010,16(3):1009-1019.
doi: 10.1089/ten.TEA.2009.0100 pmid: 19842915
[44] Manning WK, Bonner WM Jr . Isolation and culture of chondrocytes from human adult articular cartilage[J]. Arthritis Rheum, 1967,10(3):235-239.
doi: 10.1002/art.1780100309 pmid: 4291108
[45] Ito T, Sawada R, Fujiwara Y , et al. FGF-2 increases osteogenic and chondrogenic differentiation poten-tials of human mesenchymal stem cells by inactiva-tion of TGF-β signaling[J]. Cytotechnology, 2008,56(1):1-7.
doi: 10.1007/s10616-007-9092-1 pmid: 19002835
[46] Jiang XR, Huang BT, Yang HY , et al. TGF-β1 is involved in vitamin D-induced chondrogenic diffe-rentiation of bone marrow-derived mesenchymal stem cells by regulating the ERK/JNK pathway[J]. Cell Physiol Biochem, 2017,42(6):2230-2241.
doi: 10.1159/000479997 pmid: 28817810
[47] Li YY, Lam KL, Chen AD , et al. Collagen microe-ncapsulation recapitulates mesenchymal condensa-tion and potentiates chondrogenesis of human me-senchymal stem cell—a matrix-driven in vitro model of early skeletogenesis[J]. Biomaterials, 2019,213:119210.
doi: 10.1016/j.biomaterials.2019.05.021 pmid: 31132645
[48] Derfoul A, Perkins GL, Hall DJ , et al. Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes[J]. Stem Cells, 2006,24(6):1487-1495.
doi: 10.1634/stemcells.2005-0415 pmid: 16469821
[49] Indrawattana N, Chen G, Tadokoro M , et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell[J]. Biochem Biophys Res Commun, 2004,320(3):914-919.
doi: 10.1016/j.bbrc.2004.06.029 pmid: 15240135
[50] Fukumoto T, Sperling JW, Sanyal A , et al. Combined effects of insulin-like growth factor-1 and transfor-ming growth factor-β on periosteal mesenchymal cells during chondrogenesis in vitro[J]. Osteoarthritis Cartilage, 2003,11(1):55-64.
doi: 10.1053/joca.2002.0869 pmid: 12505488
[51] Hara ES, Ono M, Pham HT , et al. Fluocinolone acetonide is a potent synergistic factor of TGF-β3-associated chondrogenesis of bone marrow-derived mesenchymal stem cells for articular surface re-generation[J]. J Bone Miner Res, 2015,30(9):1585-1596.
doi: 10.1002/jbmr.2502 pmid: 25753754
[1] Li Peitong,Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.. Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues [J]. Int J Stomatol, 2023, 50(1): 37-42.
[2] Zhou Can,Zeng Qian,Wei Xi.. Prospects for the application of concentrated growth factor in vital pulp therapy [J]. Int J Stomatol, 2022, 49(6): 684-689.
[3] Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639.
[4] Shi Peilei,Yu Chenhao,Xie Xudong,Wu Yafei,Wang Jun. Research progress on the application of dental-derived mesenchymal stem cells in periodontal defect repair [J]. Int J Stomatol, 2021, 48(6): 690-695.
[5] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[6] Gong Jinglei,Huang Yanmei,Wang Jun. Research progress on multiphasic scaffold in periodontal regeneration [J]. Int J Stomatol, 2021, 48(5): 563-569.
[7] Deng Shiyong,Gong Ping,Tan Zhen. Effects of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 gene on the regulation of oral and systemic bone metabolism [J]. Int J Stomatol, 2021, 48(2): 198-204.
[8] Chen Ye, Zhou Feng, Wu Qionghui, Che Huiling, Li Jiaxuan, Shen Jiaqi, Luo En. Effect of adiponectin on bone marrow mesenchymal stem cells and its regulatory mechanisms [J]. Int J Stomatol, 2021, 48(1): 58-63.
[9] Lü Hui,Wang Hua,Sun Wen. T helper cell 17 and periodontitis related osteoimmunology [J]. Int J Stomatol, 2020, 47(6): 661-668.
[10] Yang Yeqing,Chen Ming,Wu Buling. Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 257-262.
[11] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
[12] Wu Xiaonan,Ma Ning,Hou Jianxia. Research progress of exosomes derived from different stem cells in periodontal regeneration [J]. Int J Stomatol, 2020, 47(2): 146-151.
[13] Wei Zhongwu,Huang Xieshan,Chen Zhuogeng. Application and research progress on concentrated growth factor in oral clinic [J]. Int J Stomatol, 2020, 47(2): 235-243.
[14] Xiaomeng Wang,Xiao Wang,Ce Shi,Hongchen Sun,Yang Huang. Effects of bone morphogenetic protein signalling pathway and its crosstalks on mandible development [J]. Int J Stomatol, 2019, 46(3): 258-262.
[15] Ya Yang,Peng Chen,Hongwei Dai,Lin Zhang. Change in expression of transformation growth factor-β/Smad signalling pathway-related proteins in epithelial rests of Malassez during orthodontic tooth movement in rats [J]. Int J Stomatol, 2019, 46(3): 270-276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .